
CoCo SDC

About the cover image:

Darren Atkinson designed the CoCo SDC hardware and software.
http://cocosdc.blogspot.com

Printed circuit board manufactured by Ed Snider.
https://thezippsterzone.com

The clear acrylic case on the cover designed by tim lindner.
https://youtu.be/OdSOUcd60Ok

CoCo SDC now has a second source: https://retrorewind.ca

This manual takes inspiration from Brian Blake’s original.

Manual Produced by tim Lindner: https://tlindner.macmess.org/

Fourth version: February, 2023.

COCO SDC | iii

Table of Contents
1. What is the CoCo SDC ... 1

Feature Overview .. 1
Features and Specifications ... 2
Jumper Settings ... 2
DIP Switch Settings ... 2
Hardware Guide ... 2
How is the SDC different from competing products? .. 3

2. Getting Ready For Fun .. 5
The Basics ... 5
D & E Compatibility Issues .. 5
Identifying the problem boards ... 5
Motherboard Modification ... 5
Finding a Suitable Enclosure ... 6
Updating SDC-DOS ... 6
Rescuing After a Failed Update ... 7
Recovery Steps.. 7

3. Using the SDC ... 9
DRIVE - The Status .. 9
DRIVE – Mounting SD Based Images .. 9
Multiple Disks ..10
DRIVE – With Wildcards ..10
DIR ...11
Setting Current Directory..12
Explaining DIR ...12
Locking Disk Images ...12
Creating New Disk Images..12
Ejecting a Disk Image ...12
Using the CoCo SDC with DriveWire ...12
Connecting via the Color Computer ...12
Accessing Real Floppy Disks ..13
Automatic Program Execution ..13
Set Step Rate..13
EXP ..14
DEF DW = n ..14

4. Using the Flash ... 15
Running a Cartridge Image ..15
Erasing Banks and Sectors ..15
Writing to the Flash ...16
Copying a Block of Memory ...16
The GUI editor ...16

iv | Table of Contents

5. SDC Explorer .. 17
SDC Explorer ..17
Features ...17
Command summary ...17
Joystick support ...18
Multi-disks Programs ..18
Auto execute SDCX at startup ...18
Floppy drive commands (CoCo only) ...18
Read/Write floppy disks ...18
Format floppy disk ...18
Floppy disk directory ..18
Limitations ..18

6. About File Formats ... 19
DSK Images ..19
Disk Geometry Table for DSK Images ...20
JVC Images ...20
VDK Images ..21
SDF File Format ...21
Contents of the SDF 512 byte File Header ..22
Contents of the SDF 256 byte Track Header ...23

7. Command Reference ... 25
Calling CommSDC to Send Commands and Receive Responses25
Path Names for Files and Directories on the SD Card ...25
Mount Image ...26
Mount New Image ...26
Get Info for Mounted Image ..27
Query the Size of a DSK Image ..27
Set Current Directory ..28
Get Current Directory ...28
Initiate Directory Listing ..29
Directory Page ..29
Create New Directory ...30
Delete File or Directory ..30
Read Logical Sector ...31
Write Logical Sector ..32
Low-Level Stream ..32
Abort Stream ...33
Mount Next Disk In Set ..33
Mount Disk In Set ...33
Version Number ...34
Low-Level Hardware Interface ..34

COCO SDC | 1

1 What is the CoCo SDC

CoCo SDC Prototyping.

A number of high capacity storage solutions have
previously been developed for the CoCo, including a
MicroSD card interface, a handful of IDE and SCSI
interfaces and the very popular DriveWire server.

One drawback of these offerings has been that they aren’t
compatible with software that was written to interact
directly with a floppy disk controller. This isn’t so much a
problem if you are primarily using the CoCo for BASIC
programming or running OS9 software. There are however
a number of titles (mostly commercial games) that fail to
work with those other systems.

The CoCo SDC is a home-brew project for the TRS-
80 Color Computer (CoCo). Darren Atkinson began
development in 2009. Originally intended to just
add floppy disk controller emulation to a DriveWire
connection, that idea expanded over time to include
emulating a floppy controller for an SD-card reader with
DriveWire server access.

The CoCo SDC aims to solve the compatibility problem by
combining the traditional “software hook” approach with
a robust emulation of the floppy controller in hardware.
This dual mode implementation provides excellent
performance for the majority of software which “plays
by the rules” while adding a high degree of compatibility
with those titles that employ floppy-based copy protection
schemes or simply choose to use their own floppy drivers.

Feature Overview

An enhanced LBA access mode has also been incorporated
into the firmware, allowing the CoCo SDC to go beyond
simply emulating floppy disks and interface with virtual
hard disk images as large as 2 gigabytes. Two separate disk
images (floppy or hard disk) contained on the same SD
card may be “connected” simultaneously.

CoCo SDC Revision 3 Board.

Also on board is 128K of Flash memory which is divided
into 8 banks of 16K. These 16K banks are both hardware
and software selectable and occupy the cartridge ROM
space from $C000 to $FEFF (or $FDFF for some CoCo
modes). One bank of the Flash memory is used to hold the
SDC-DOS code which is yet another patched version of
Microsoft’s Disk Extended Color BASIC 1.1.

2 | Chapter 1

Included in SDC-DOS are additional commands to mount
disk image files on the SD card, program the Flash and
execute ROM images contained in the Flash. DriveWire
disk support is also included in SDC-DOS.

Features and Specifications
• Atmega 328P AVR micro controller @ 10MHz
• Custom 512-byte bootstrap allows firmware to be

updated by the CoCo
• 128K In-System-Programmable Flash
• Accepts SD/SDHC cards formatted with FAT16 or

FAT32 file system
• Emulates a Tandy Floppy Disk Controller
• Emulate Dragon DOS floppy controllers
• LBA access mode for virtual hard disk support
• Extensions to Disk BASIC in SDC-DOS for disk image

manipulation
• DriveWire disk protocol with auto-speed configuration

for CoCo 1, 2 or 3
• “Disk Switch” button to support multi-disk programs
• PCB can be mounted in a Tandy FD-502 enclosure
• Requires Extended Color BASIC.
• Works in as little as 16K.

Jumper Settings

The three-pin jumper strip provides two mutually
exclusive options for board configuration; Cartridge Auto-
Start and Dragon DRQ Mode. The default setting has
neither option enabled (no jumper installed).

Installing a jumper between the center pin and the AUTO
pin connects the Q clock to the CART interrupt pin. This
causes the computer to automatically start executing the
program in the selected Flash bank at power-up. Do NOT
use this option to auto-start SDC-DOS or other Disk
BASIC ROMs.

Installing a jumper between the center pin and the DRQ
pin is required to support emulation of a Dragon DOS
floppy controller. Do NOT install a jumper in this position
when using the board with a CoCo.

CAUTION: Make sure the computer’s power is off before
making any changes to the jumpers.

Jumper & DIP Switches.

DRGNAUTODRQ BANK
4 2 1

ON

Installing a jumper in the DRQ position is necessary for
emulating a Dragon floppy controller. Dragon controllers
connect the DRQ signal from the Western Digital FDC
chip to the CART interrupt (FIRQ) line on the cartridge
port. The CoCo SDC provides an emulated DRQ signal
for this purpose. You do not want to install the DRQ
jumper when running on a CoCo since it only expects
CART interrupts to be used for auto-starting a Program
Pak.

DIP Switch Settings

The board includes a 4-position DIP switch that is used
to configure which bank of Flash is active at power-
up or reset and which addressing scheme is used to
communicate with the controller.

CAUTION: Make sure the computer’s power is off before
making any changes to the DIP switch settings!

Three of the switches specify the Flash bank to activate
upon power-up or system reset. The switches are labeled
on the board as 4, 2 and 1. The eight Flash banks are
numbered 0 to 7. Place only those switches whose sum
equals the desired bank number into the ON position. For
example, to select bank 5, place the switches labeled 4 and
1 into the ON position and leave the switch labeled 2 in
the OFF position. The board is provided with SDC-DOS
in bank 0 of the Flash and all three switches in the OFF
position.

The DRGN switch selects the address scheme for the
controller. In the OFF position the controller will use the
CoCo address scheme. In the ON position, the controller
will use the Dragon DOS address scheme. The different
schemes are summarized in the following table.

Hardware Guide

SD Card Direction.

COCO SDC | 3

Use only SD or SDHC cards with the CoCo SDC. It is
recommended to use an SD Card with a capacity of 32GB
or less. These cards generally are preinstalled with a FAT16
or FAT32 file system. Larger cards, such as a 64 GB SDXC,
usually have an exFAT file system. These type of cards will
have to be reformatted to work with the CoCo SDC.

The SD card socket is a Push-Push type. When removing
the card, always push in to release the latching mechanism
before sliding the card out. Never use force to pull the card
out of the socket. The card must be inserted into the socket
upside-down (label facing down, contacts facing up).

Insert the CoCo SDC into the expansion port before
applying power to the CoCo or Multi-Pak Interface. The
CoCo SDC, like other floppy disk controller generally
go into slot 4 of a Multi-Pak Interface. When power is
applied, the LED on the CoCo SDC board should light
up momentarily. If the LED does not turn off after a few
seconds then this is an indication that the card was not
recognized by the hardware. This can happen if the card
has not been formatted with a FAT16 or FAT32 file system.
It could also indicate that the card was not inserted
properly or that there is a problem with the CoCo SDC
itself.

Although SD cards are hot-swappable, the CoCo SDC
firmware does not handle that situation very well. It’s
recommended that you completely shutdown the CoCo
and MPI before swapping cards.

Usage CoCo
Address

Dragon
Address

Drive Control Latch $FF40 $FF48
Flash Data Register $FF42 $FF4A
Flash Control Register $FF43 $FF4B
Command/Status $FF48 $FF40
FDC Track Register I/O Register 1 $FF49 $FF41
FDC Sector Register I/O Register 2 $FF4A $FF42
FDC Data Register I/O Register 3 $FF4B $FF43

CoCo & Dragon Address Schemes.

How is the SDC different from competing
products?
• No reliance on expensive third-party modules like the

4D systems uDrive.
• Does not use a slow serial interface based on an obsolete

part (6551 ACIA).
• True emulation of the floppy controller hardware for

maximum compatibility.
• Supports the popular DriveWire protocol for PC-based

disk images.
• Eight banks of in-system-programmable Flash instead of

an EPROM.
• Ability to “switch disks” for multi-disk programs via a

button on the controller.
• SD cards are FAT-formatted and require no special

imaging utility for a PC/Mac.

Probably the only drawback of the device is the fact that
the SDC does not come with an enclosure.

John Strong has been known to make 3D printed cases
available. Here is his website: http://strongware.net/
author/johnstrong/

4 | Chapter 1

© 2020, Rick Adams

COCO SDC | 5

2 Getting Ready For Fun

The Basics

There are a few very important things that must be
touched upon before we get into the actual operation of
the CoCo SDC:

1. NEVER insert or remove the CoCo SDC into a CoCo
that is turned on! Just like any other device that uses a
Color Computer cartridge port, inserting the CoCo
SDC into your Color Computer can damage the Color
Computer, CoCo SDC, or both.

2. Although SD cards are hot-swappable, the CoCo SDC
firmware does not handle that situation very well. It’s
recommended that you completely shutdown the CoCo
and MPI before swapping cards.

3. The firmware in the CoCo SDC does not currently
support long file names. You must ensure that the names
of all files and directories which are to be accessible by
the CoCo conform to the older 8.3 naming conventions.

D & E Compatibility Issues

The CoCo SDC is compatible with all versions of the
Color Computer and Dragon Computer lines. However,
after getting the CoCo SDC into the hands of some users,
it was discovered that Flash programming does not work
correctly on certain CoCo 1 motherboards. The two
earliest CoCo 1 boards known as the ‘D’ and ‘E’ boards are
the culprits.

Board Identifiers.

The Cartridge Select Signal (CTS) on these boards
exhibits too slow of a rise-time which causes problems
for the high-speed Flash chip. This does not affect normal
operation of the CoCo SDC in terms of being able to read
data or execute code from the Flash. When writing to the
Flash however, the slow rise time often results in incorrect
data being stored in the chip.

There are a few options to deal with this problem:

1. Do not use a CoCo 1 with one of the aforementioned
motherboards to program the Flash. This option is not
ideal, especially if you don’t have another suitable CoCo in
your possession.

2. Use a Multi-Pak Interface when programming the Flash.
The signal buffering in the MPI acts as a kind of filter for
the CTS line, producing a nice clean transition. This is a
good option if you do not wish to modify your CoCo and
you happen to own an MPI.

3. Perform a simple modification to the CoCo 1
motherboard to fix the problem (see details below).

Identifying the problem boards

To determine if your CoCo 1 has one of the problematic
motherboards you will need to open the case and look
inside. The boards in question have a large metal shielded
area that encloses all of the main logic chips including
the RAM, CPU, SAM, VDG and PIAs. There should be a
number printed on the board just below the cartridge port
which ends with “-D” or “-E” as seen in the photos below.

If your board has a smaller RF shield which only covers
the SAM and RAM chips, or has a number printed on
the board (near the front-left corner) that ends in ‘285’
then this is what is often referred to as the ‘F’ board. The
‘F’ board does not exhibit the problem and needs no
modification.

Motherboard Modification

Please note that any modification to the CoCo is
performed at your own risk. Although it is highly unlikely
that this modification will cause any problems with other
hardware, I can’t be held responsible for any damage or
loss of functionality that may occur should you choose to
go through with it.

6 | Chapter 2

The modification is rather simple and involves cutting just
one leg of a capacitor. Be sure to disconnect power to the
CoCo and discharge any static electricity from your body
before touching any of the components inside the CoCo.
The affected capacitor is located within the shielded area
so you will need to remove the metal cover to gain access.
Find the capacitor labeled C85 which is located next to the
cartridge port (see photo).

Using an appropriate tool, cut the front leg (the one nearer
the keyboard) of the capacitor to sever the connection.
That’s it! Replace the metal cover, close up the case and
you are good to go.

CoCo 1 D & E board mod.

Finding a Suitable Enclosure

Before you plug in the CoCo SDC, you should consider
an enclosure for the device. Ideally, an FD-502 enclosure
is preferred, as the FD-501 enclosure is slightly different
and requires some modifications to work properly. Both
enclosures need to be modified to provide easier access to
the DIP Switches, while the FD-502 already provides easy
access to the SD card slot and the push button by the SD
card slot.

The SD card slot and push button ARE accessible, with
the FD-501, however, it’s advisable to trim some excess
material from the housing in order to make it easier to
access these features of the CoCo SDC.

1 Available from: http://cocosdc.blogspot.com

Updating SDC-DOS

The SDCSETUP.DSK1 image contains a utility program
that can be used to install the firmware for a CoCo SDC
controller. Both the micro controller code and the SDC-
DOS (Disk BASIC) ROM image can be installed using
this utility. When using a CoCo 1 or 2 a minimum of 32K
RAM is required to perform an installation of SDC-DOS
and 64K RAM is required to install the MCU firmware.

The disk image may be copied to an SD card or accessed
via DriveWire. With the disk image mounted, run the
utility by entering:
RUN “SETUP”

You will be presented with the following menu options:
 V DISPLAY INSTALLED VERSIONS
 F INSTALL MCU FIRMWARE
 D INSTALL SDC-DOS
 Q QUIT

Press the V key to display the version information of the
software currently installed in the CoCo SDC controller.
This will display both the MCU firmware version and the
SDC-DOS version.

If your firmware is older, press the F key to begin the
process of installing the ATmega MCU firmware. This
will first load the firmware into memory and perform a
checksum validation. The version number of the firmware
to be installed is also displayed. Before installation begins
you will be asked for confirmation by pressing the Y key.
After installation is complete the CoCo will re-boot.

Press the D key to perform an installation of SDC-DOS.
This will first load the ROM image into memory and
ask which of the 8 Flash banks should be used as the
destination. You may install over the version of SDC-DOS
that is currently running if so desired. When installation is
complete the CoCo will re-boot using the newly installed
version (switching banks if necessary).

COCO SDC | 7

Boot screen for SDC-DOS.

Rescuing After a Failed Update

This is mostly for folks who have attempted an update on
a D or E board CoCo 1, and ended up with a CoCo SDC
that will only boot to DECB. The recovery steps should be
performed on either a modified D or E board CoCo 1, a
CoCo 2, or a CoCo3 – as long as the DIR command hasn’t
been issued with any arguments prior to attempting the
update.

Before we get to the actual steps, it might help to
understand a little about the boot process of the CoCo
SDC. Mounting a disk image is actually a task performed
by the Atmega micro-controller, not SDC-DOS. The
commands embedded in SDC-DOS tells the Atmega
to mount the disk images at the location you specify.
However, if your CoCo SDC crashes after an update
attempt, it’s likely you will not be able boot to SDC-DOS if
you chose to over-write bank 0 of your Flash memory.

The way around this is to use a file the Atmega will
automatically mount when the CoCo is first powered on.
The STARTUP.CFG file is this file. If you create an ASCII
text file named:
STARTUP.CFG

…and save it to the root of your SD card, the Atmega
micro-controller will read that file at boot. The STARTUP.
CFG file must contain the following line in order cause the
Atmega to automatically mount the SDC101.DSK file:
0=SDC101.DSK

When this file is read by the Atmega micro-controller at
boot, the CoCo SDC is already mounted to the SDC101.
DSK.

DO NOT COMPLETE THE FOLLOWING
PROCEDURES ON AN UNMODIFIED D OR E
BOARD CoCo 1!

Recovery Steps

In order to recover from this condition, use the following
steps:
1. Create the STARTUP.CFG file as described earlier
2. Copy STARTUP.CFG to the root of the SD card on a

PC or Macintosh
3. Change the CoCo SDC DIP Switches to select bank 1

(for DECB)
4. Place the SD card in the slot on the CoCo SDC.
5. Make sure your CoCo is turned OFF!
6. Insert the CoCo SDC into the cartridge port of your

Color Computer.
7. Turn on your CoCo.
8. Enter the DIR command (with no arguments if you’re

using a CoCo3 – just to be safe).
9. Enter RUN “UPDATE” and follow the prompts.
10. Your CoCo SDC should now be back to the way it

was when it was shipped to you.

You can test this by powering down your CoCo, setting the
DIP Switches back to bank 0, and restarting your CoCo. It
should boot up to the DECB message with the SDC-DOS
and version label.

8 | Chapter 2

© 2020, Rick Adams

COCO SDC | 9

3 Using the SDC

If you had to go thru the CoCo SDC update process,
then you already are familiar with one of the enhanced
commands. As stated earlier, SDC-DOS is yet one more
version of an extended or patched DECB.

DRIVE - The Status

DRIVE has several uses. It’s first and most basic use is to
provide a display of the current drive configuration and
status.

Typing DRIVE on your CoCo with the SDC plugged into
it should give you a display of the drive mappings that
resembles this:
0: ON GAMEPAK1.DSK 0
1: OFF ---- 0
2: ON DW #0 2
3: ON DW #0 3

Each line in the table shows the current mapping
information for one of the four logical drive numbers. The
first column represents that drive number.

The second column in the table indicates whether or not
Disk Image mode is currently on or off. When Disk Image
mode is off, the corresponding real floppy drive will be
used instead. Assuming a floppy controller is present.

The third column identifies the current Disk Image being
mapped to the drive number. There are two possible
configurations for this:
1. For an image located on an SD card this will be the

name of the image file. (Only the name of the disk image
will appear here, not the full directory path)

2. For a DriveWire image this will be “DW #n” where n is a
DriveWire server virtual drive number.

The fourth column shows the index of the current virtual
floppy disk within the larger ‘hard disk’ image file (0 -
255).

DRIVE is also used to assign disk images to drives on the
CoCo – real drives or virtual drives.

DRIVE – Mounting SD Based Images

The DRIVE command is multi-faceted. As stated above,
issuing just the DRIVE command will give you a status
on the CoCo SDC’s drive mapping. However, the DRIVE
command, as displayed in the SDC-DOS updating section,
also instructs the Atmega micro-controller to map the disk
images stored on the SD card to a virtual drive.

The proper context for the command is:
DRIVE n, “path name”

Where n is the drive number; path name is the folder that
holds your target disk image.

For example, issuing:
DRIVE 0, “APPS/TW64/TW64.DSK”

Would tell the Atmega to map DRIVE 0 to the TW64.DSK
image in the folder listed in the path name.

Another example; let’s say you want to play Pitstop II, on
the PITSTOP.DSK image, located in the Epyx folder under
games. The command you would issue is:
DRIVE 0, “GAMES/EPYX/PITSTOP.DSK

Entering the DIR command would display a list of the
files on the disk image, just like it would with real floppy
hardware. You can LOAD & RUN or LOADM & EXEC
just as you would with conventional hardware.

There is also an alternate form for the DRIVE Commnad:
DRIVE n, “path name”, x

10 | Chapter 3

If the disk image is an HDB-DOS hard drive image, the
extra parameter will let you choose which disk to mount.

Multiple Disks

As discussed earlier, one of the features CoCo SDC has
over products that preceded it to market is the ability
to use software that contains multiple disks, as well as
software that uses non-standard DSKCON routines.

In order to use games and applications that utilize multiple
disks, the CoCo SDC has a way of knowing when this
is necessary. The disk images for multi-disk games and
applications need to be located in the same folder, and
the last character of the disk title must be a number, 1
thruough 9. Entering the following command:
DIR “GAMES/SUNDOG/COCO3/SINSTAR/

Returns the following:

Now, to mount the first disk image in the folder, simply
enter:
DRIVE 0, “GAMES/SUNDOG/COCO3/SINSTAR”

When the CoCo SDC mounts this image, the red LED on
the SDC will blink one time – indicating that the lowest
numerical disk in the folder has been mounted – in this
instance, one. Entering the DIR command now will result
in SINSTAR1.DSK’s directory:

From here, you would RUN “SINSTAAR” to load and run
the game. When prompted for disk number two, simply
push the button on the CoCo SDC, next to the SD slot,
one time. The red LED will blink twice indicating that disk
two is now selected. Follow the prompts on screen each
time the game or application asks for the next disk, press
the CoCo SDC button to select the next numerical disk
and continue.

DRIVE – With Wildcards

Wildcard characters (* and ?) can be used in the file
portion of the path name but not in the directory
portion(s). Assuming there were no other files in the
GAMES directory whose name started with the letters CH,
the command could be shortened to:
DRIVE 0,”GAMES/CH*.DSK

You may also omit the extension from the file name. In
this case the system will first try to mount a file with the
given name that has no extension. If no such file exists
then .* is substituted for the missing extension and the
system uses the first wildcard match, if any. This means the
above command could be further shortened to:
DRIVE 0,”GAMES/CH*

Startup Configuration File

Entering a DRIVE command every time you start up the
CoCo can be inconvenient, especially if you tend to use a
particular disk image file on a regular basis. To alleviate
this problem you can add a startup configuration file to
the SD card.

COCO SDC | 11

You will need to use a computer with an SD card reader to
create a plain-text ASCII file in the root directory of the
SD card. The name of the file must be “STARTUP.CFG”.
The contents of the file may contain lines of text which
specify the initial mount points for drives 0 and/or 1 as
shown in the example below.
0=Nos9Lev2.dsk
1=Utils.dsk

You can also specify the path name of the directory to be
set as the Current Directory:
D=/CoCo/Games

Make sure all file and path name components conform to
the 8.3 naming conventions.

DIR

Let’s say you have an SD card arranged into folders, and
you want to load one of your favorite games, but you
cannot remember for sure which folder the image is in.
That’s where the DIR command will come into play. The
DIR command in SDC-DOS works very much like DIR in
DECB, in that it gives you a directory listing of the current
disk – be it a real floppy disk or a disk image assigned to a
drive using the DRIVE command.

Just entering DIR after first powering on the CoCo, with
the CoCo SDC inserted will most likely end in an I/O?
error since no image was mounted. This may not be
the situation if you had to use the STARTUP.CFG file
discussed earlier, so we’ll start with the assumption of no
mounted disks.

When used with an SD/SDHC card, entering:
DIR -

Will result in a directory listing of the root of the card as
shown below, including any files, disk images or folders:

DIR results of SD Card.

You can also look into folders to see what disk images
reside inside them. For example, I know that Sinistaar by
Sundog Software is a child folder to the Sundog folder.
Using the following command, you can work down to find
out what the disk names are for Sinistaar:
DIR “GAMES/”

Lists the files and folders in the GAMES folder.
DIR “GAMES/SUNDOG/”

Lists files and folders in the GAMES/SUNDOG folder.
DIR “GAMES/SUNDOG/COCO3”

You should have the picture by now…
DIR “GAMES/SUNDOG/COCO3/SINSTAR/”

That last command will result in the following:

DIR results of subdirectory of SD Card.

That is a lot of typing to pull a directory, but, this depends
solely on the file structure of your SD card.

DIR can also use wildcard characters (* and ?). For
example, if you’re looking for disk image and you only
remember the first few characters, try:
DIR “GAMES/SIN*”

Which returns a list of games starting with the characters
SIN.

Further, you can also search for specific files extensions.

For example:
DIR “MUSIC/*.ORC”

Returns a list of files with the ORC file extension.
Likewise, entering:
DIR “APPS/*.DSK”

Returns a list of disk image files in the APPS folder.

12 | Chapter 3

Setting Current Directory

You can specify a Current Directory for commands
that access the SD card. Once specified, all subsequent
commands that refer to files or directories on the SD card
are relative to the Current Directory unless the path name
begins with a slash (/).

Examples:
DIR = “GAMES/ACTION”
DIR = “..”
DIR = “/”

Explaining DIR

Information displayed by the DIR command for each item
is presented as 4 columns; Name, Extension, Lock Status
and Size.
CASINO DSK - 157K
EGYPT SDF - 228K
GAMEPAK1 DSK L 157K
GAMEPAK2 DSK - 157K
GR2K <DIR>

When an L appears in the third column instead of a
hyphen (-), it indicates that the file is locked. A locked disk
image may still be mounted, but you cannot make changes
to its contents. Any attempt to use commands such as
SAVE or KILL on a locked image will result in a ?WP
ERROR.

For files, the fourth column displays the size of the file
in kilobytes. For directories, the fourth column simply
displays <DIR>.

Locking Disk Images

There are several way to mark a file as read only. Primarily,
the CoCo SDC honors the FAT 16/32 read only attribute.

On Mac OS X this is accessible by choosing “Get Info”
from the file menu while the file is selected. In the
resulting window turn on the “Locked” check box.

On Windows, files can be lock by displaying the Properties
and clicking the “Read-only” check box.

In addition, the SDF and VDK file formats include an
internal value to mark the image as read only.

Creating New Disk Images

You can create a new, blank disk image file on the SD
card by adding the word NEW as a final parameter to the
DRIVE command. If the specified file already exists it will
not be erased or replaced.

1 In SDC-DOS 1.2 the system was changed to create 40 track SDF images instead of 35 Track.

DRIVE 0,”SYSTOOLS.DSK”,NEW

To create a single sided disk image in the SDF format use
the NEW+1 option.
DRIVE 0,”SEVENLNK.SDF”,NEW+

To create a double-sided, 40 track, disk image in the SDF
format use the NEW++ option.
DRIVE 0,”SEVENLNK.SDF”,NEW++

A new SDF disk image is like an un-formatted floppy disk.
You will need to use the DSKINI command to format the
SDF image otherwise all disk operations will result in IO
errors.

Ejecting a Disk Image

In most cases it is not necessary to eject disk images under
SDC-DOS. To switch disks you can simply mount a new
image in place of an existing one. One situation where
the need to eject does arise is when you want to move an
image to a different drive number.

For example, if you try to mount an image in drive 1 that
is already mounted in drive 0, the system will produce an
?AO ERROR (already open). To accomplish this you must
first eject the image from drive 0 by using the UNLOAD
argument in the DRIVE command:
DRIVE 0,UNLOAD

Using the CoCo SDC with DriveWire

Having the functionality of storing and accessing your disk
images right from an SD card is great. The possibilities are
almost endless. However, the CoCo SDC is not a one trick
pony.

Years ago DriveWire was released to act as a disk image
file server for Color Computer users. With the DriveWire
Server software running on a PC or Mac as a server
application, a user could connect to their Color Computer
to the server machine bit banger ←→ COM port and viola,
you could change disk images at will on the server, while
being able to run almost all of your favorite software.

The CoCo SDC has the DriveWire protocol already built
in, and will communicate with a PC or Mac running the
DriveWire server software.

Connecting via the Color Computer

To access disk images on the DriveWire server, you use
the DRIVE command as previously explained; instead of a
string argument identifying an image file on the SD card,
you provide a DriveWire virtual drive number (prefixed
with #) in the range of 0 to 63:

COCO SDC | 13

DRIVE 2,#0

If you have a virtual ‘hard disk’ image containing an array
of up to 256 floppy images, you can specify the index
of the desired floppy image as a third argument to the
DRIVE command:
DRIVE 2,#0,125

What this does is assign whatever disk image you have
pre-loaded in DriveWire to virtual floppy #2 in SDC-DOS.
That is all. You cannot actually change the disk image from
SDC-DOS.

Of course in DriveWire, you need to have disk images
assigned to a floppy disk. Once the CoCo SDC has
been assigned to a DriveWire disk position, you can
switch disks at will with the DriveWire GUI on the host
computer.

It should be stated here that DriveWire was created for use
with HDB-DOS, a product developed and sold by Cloud 9.

There is no support in SDC-DOS or the CoCo SDC for
sending a signal over the cable asking DriveWire to switch
disk images. Of course if you have the server running on
a nearby PC you should be able to use the server’s UI to
do this, allowing you to use games and applications that
reside on multiple disks.

It should also be pointed out that DriveWire support in
SDC-DOS was provided more as a convenience feature for
transferring files between a PC and the SD card. You don’t
get quite the same feature-set that HDB-DOS provides.

An example of this would be if you wanted copy a disk
image – let’s say Flight Simulator II – from your PC to the
CoCo SDC. The steps you would take are:

Mount the FSII disk image to Drive 0 in DriveWire.

Create a new floppy image on the CoCo SDC with the
following command:
DRIVE 0, “GAMES/FSII.DSK”,NEW

Assign the CoCo SDC drive 1 to the DriveWire server
with the following command:
DRIVE 1, #0

Finish the process by entering the following command:
BACKUP 1 TO 0

Finally, the floppy controller emulation features of the
CoCo SDC are only available to images located on the
SD card. The DriveWire support is affected by the same
compatibility issues that apply to HDB-DOS or CoCoNet
since it is implemented completely in software by SDC-
DOS.

If you run a program which has its own floppy I/O
routines from an image on the DriveWire server, it will
run until the point where those routines are first executed.
At that time the CoCo SDC will detect that the floppy
hardware is being accessed and try to translate it to the
corresponding SD card image (if any). This would be
indicated by the red LED on the CoCo SDC turning on
and staying on when the disk access would normally
occur, causing your Color Computer to enter into a locked
state.

Accessing Real Floppy Disks

In addition to disk images located on SD cards and the
DriveWire server, SDC-DOS will also provide access to
real floppy disks if you have a Mult-Pak Interface and a
separate floppy controller. When powering-up the system,
the switch on the MPI must be set to the slot number
containing the CoCo SDC board.

SDC-DOS will examine the hardware plugged into the
MPI looking for the highest numbered slot containing a
floppy controller. If found, the floppy controller will be
used for any drive number in which Disk Image mode has
been turned off.

To turn off Disk Image mode for a particular drive number
and thereby utilize the floppy controller, specify OFF as
the second argument in the DRIVE command:
DRIVE 1,OFF

Turning off Disk Image mode disables any SD card
image or DriveWire image currently mounted under the
specified drive number, but does not eject (unload) the
image. You can reestablish access to the underlying image
by simply turning Disk Image mode back on for that drive:
DRIVE 1,ON

Automatic Program Execution

When SDC-DOS starts following power-on or cold reset,
it will search the RS-DOS formatted, mounted disk images
(as specified in the STARTUP.CFG file) for a BASIC
program file named “AUTOEXEC.BAS”. If such a file is
found, it will be automatically loaded and run. You can
hold down the SHIFT key to bypass this feature.

Set Step Rate

When acessing the real floppy disk drives, use the
following command to set the step rate:
DEF STEP=r

where r represents the stepping rate in miliseconds.
Allowed values are 6, 12, 20, or 30. The default is 30.

14 | Chapter 3

EXP

The EXP command has been added to provide quick
access to a program for browsing the contents of the SD
card (Explorer utility). Entering the EXP command will
cause the system to search the root directory of the SD
card for a disk image named SDCEXP.DSK. If found,
the disk image will be automatically mounted in drive
1. If the disk image contains a BASIC program named
AUTOEXEC.BAS then it will be automatically loaded and
run.

You can use this command to start The SDC Explorer
program described in chapter 5 of this manual.

DEF DW = n

You can now change the DriveWire speed configuration
by using the DEF DW=n command. Specify the CoCo
platform number (1, 2 or 3) as the value for n to select the
desired speed:

n Speed Comment
1 38,400 bps
2 57,600 bps Faster op-amp required to work

correctly on a CoCo 1
3 115,200 bps CoCo 3 only

When running on a CoCo 1 or 2 you cannot specify 3 as
the parameter since those machines are not capable of
running at true double-speed.

© 2020, Rick Adams

COCO SDC | 15

4 Using the Flash

An issue involving Flash programming on a CoCo 1 has
been discovered.

Please see Chapter 2, section “D & E Compatibility
Issues” for details.

The CoCo SDC contains 128K of Flash memory which
is divided into eight banks of 16K. All eight banks of
the Flash are user-programmable. The board is provided
with SDC-DOS pre-programmed into bank 0 and stock
Disk BASIC 1.1 in bank 1. SDC-DOS adds extensions to
the Disk BASIC commands which make it easy to take
advantage of the Flash memory.

Care should be taken when using these commands to
avoid accidental destruction of data. You should always
keep copies of the Flashed data elsewhere so it can be re-
programmed if necessary.

Running a Cartridge Image

The Flash memory will typically be used to hold images of
cartridge-based software (Program Paks).

The RUN command in SDC-DOS has been extended
to facilitate the execution of a cartridge image from
any of the 8 Flash banks. Simply pass the bank number,
prefixed with the @ character, as an argument to the RUN
command.
RUN @2

This has the effect of activating the specified bank and
performing a cold re-boot of the CoCo. If the first two
bytes of the cartridge image are “DK” then the normal
start-up process occurs, allowing Extended BASIC to
transfer control to the cartridge image at $C002 during
initialization. If anything else appears in the first two
bytes then control is transferred to $C000 immediately
after the hardware is initialized.

Normally, pressing the RESET button on the CoCo will
re-activate the Flash bank set by the DIP switches on the
CoCo SDC board. You can force the system to retain the
bank selection of the RUN command by suffixing the
command with ,R:
RUN @2,R

After using this option you will need to fully power-down
the CoCo (and Multi-Pak Interface) in order to restore the
normal Reset behavior.

Erasing Banks and Sectors

The active Flash bank appears in the CoCo memory map
from $C000 to $FEFF. Each of the 16K banks is further
divided into four sectors of 4K:

Sector Address Range
0 $C000 - $CFFF
1 $D000 - $DFFF
2 $E000 - $EFFF
3 $F000 - $FEFF

On a CoCo 3, the last 256 bytes ($FE00 to $FEFF) are not
accessible using SDC-DOS 1.2 or earlier.

The Flash chip uses the sector divisions for erase
operations. Before programming data into the Flash, the
sectors to be programmed should first be erased. Erasing
the flash has the effect of setting all bits to ‘1’ resulting in
byte values of $FF. The KILL MEM command can be used
to erase a single sector or an entire bank.

Erase all four sectors of bank 3:
KILL MEM @3

Erase only sector 2 of bank 6:
KILL MEM @6,&HE000

16 | Chapter 4

When erasing a single sector you can specify any address
from $C000 to $FEFF. The entire sector containing that
address will be erased. You are not allowed to erase any
part of the active bank (the one from which SDC-DOS is
running).

Writing to the Flash

Writing data to the Flash involves a process where one
or more bits in a byte are cleared to ‘0’. Once a bit has
been cleared it can only be changed to a ‘1’ through an
Erase operation. The WRITE MEM command is used to
program one or more bytes.
WRITE MEM @bank, source, destination, count

@bank Bank number in which the data will be
written (0-7)

source Starting address of the source data
destination Address in the Flash where the data will be

written ($C000-$FEFF)
count Number of bytes to write

The count argument will be clipped if necessary to prevent
writing past the end of the Flash address space.

Copying a Block of Memory

When creating a utility program to manage the Flash, one
feature that is often needed is the ability to quickly move
a block of memory. Consider the situation where you
wanted to copy the contents of one Flash bank to another.
This would require that data from the source bank first
be copied to a temporary buffer in RAM before writing it
to the destination bank. The COPY MEM command has
been provided for this purpose.
COPY MEM [@bank,] source, destination, count
[USING slot]

@bank The Flash bank number to activate during
the copy (0-7)

source Starting address of the source block
destination Address where the block will be copied to
count Number of bytes in the block
USING slot The Multi-Pak Interface slot to activate

during the copy (1-4)

The bank and slot arguments are both optional and
mutually exclusive. You can provide one or the other, but
not both. The bank argument can be provided when you
are copying data from a specific Flash bank on the CoCo
SDC board. The slot argument allows you to copy data
from the ROM of another cartridge when using a Multi-
Pak Interface.

Be careful when using the COPY MEM command as it
can easily crash the CoCo if a block is copied to a location
used by the system.

The BASIC program listing below shows how to copy the
contents of a ROM cartridge into one of the Flash banks of
the CoCo SDC. The example assumes an MPI is attached
and the CoCo has at least 32K RAM. It does not perform
any validation of the input parameters.

10 CLEAR 200,&H3FFF ‘ RESERVE A 16K RAM
BUFFER AT $4000
20 INPUT “COPY FROM MPI SLOT”;SL
30 COPY MEM &HC000,&H4000,16384 -256 USING
SL
40 INPUT “DESTINATION BANK”;BK
50 KILL MEM @BK ‘ ERASE BEFORE WRITE
60 WRITE MEM @BK,&H4000,&HC000, 16384-256

The GUI editor

SDCFLASH 0.10, Guillaume Major

SDCFLASH is an utility to flash cartridges ROM files
into any of the 8 available Coco SDC flash bank. It is
compatible with all CoCos and requires 32K.

SDCFLASH is based on SideKick by Luis Antoniosi.

https://colorcomputerarchive.com/search?q=sdcflash

• Select ROM file to flash with a file browser
• Write to any of the 8 available flash banks
• Boot flash bank
• Quick file selection by the first 4 letters - select ROM file

to flash with a file browser
• Write to any of the 8 available flash banks
• Boot flash bank
• Quick file selection by the first 4 letters

COCO SDC | 17

5 SDC Explorer

SDC Explorer

The SDC Explorer 1.10 (SDCX) is a free file browsing
program created by Guillaume Major for the Coco SDC.
It is compatible with all CoCos, the Dragon 32 and the
Dragon 64. SDCX requires 32K. It is based on SideKick by
Luis Antoniosi.

It can be downloaded from: The Color Computer
Archive.1

Features
• List files and directories on the SD card
• Create, rename and delete disk images and directories
• Mount directories for multi-disks programs
• Launch ML and BASIC programs
• Detect and boot OS-9 disks
• Quick disk and file selection by the first 4 letters
• Sorted SDC and disk directory listings
• Read and write floppy disks2

• Display floppy disks directory2

• Format floppy disks2

• Double-sided floppy disks support2

• Joystick support

1 https://colorcomputerarchive.com/search?q=sdc+explorer
2 SDC-DOS, disk controller and MPI required

Command summary

SHIFT –B Boot Flash Bank

SHIFT –C Create disk

SHIFT –K Create directory

SHIFT –N Rename disk or directory

SHIFT –X Delete disk or directory

SHIFT –1
Mount/unmount disk in drive 1 (Coco
version)

SHIFT –2
Mount/unmount disk in drive 2 (Dragon
version)

SHIFT –I Display file information

SHIFT –S Toggle directory sorting

SHIFT –M Mount directory (multi-disks programs)

CLEAR Refresh directory

SHIFT –
CLEAR

Return to root of SD card.

SHIFT –R Read floppy disk

SHIFT –W Write disk image

SHIFT –D Show floppy drive directory

SHIFT –F Format floppy disk

SHIFT –H Show help
ENTER Launch program or boot disk
BREAK Quit

Navigational keys

/ Switch between windows

SHIFT – / Page up/page down

SHIFT – / Home/end

A–Z, 0–9 Select next file matching up to 4
characters typed quickly

18 | Chapter 5

Joystick support

Press the joystick button of your choice (right of left)
to enable joystick. Press the joystick button to change
directory, launch a program or boot a disk. Press and hold
the joystick button to navigate quickly through the lists.

Multi-disks Programs

SDCX can mount directories with a disk set to support
multi-disks programs. Press SHIFT –M to mount a
directory with a disk set. Files on the first disk will appear
in the right window. Press SHIFT –F to refresh the
directory list after switching disk with the button on the
Coco SDC.

Auto execute SDCX at startup

To run SDCX automatically at startup you need SDC-DOS
1.3 or later. To download the latest version of SDC-DOS
go to http://cocosdc.blogspot.ca/ and click on the “Latest
Firmware” link in the Pages menu on the right. Run the
SETUP.BAS program to update your SDC-DOS version.

Copy the SDCX.DSK file to the root of your SD card and
rename it to SDCEXP.DSK.

Create or modify your startup.cfg file at the root of your
SD card to mount the SDCEXP.DSK disk in drive 0 or 1 at
startup. To do so, add the line #=SDCEXP.DSK where # is
the drive number. Example:
0=SDCEXP.DSK

With this setup you can now use the EXP command to run
SDCX.

Floppy drive commands (CoCo only)

Floppy drive commands require SDC-DOS, a Multi-Pak
Interface, a disk controller and a floppy drive. 64K is
required on a Coco 1 and Coco 2 for double-sided disk
support.

Read/Write floppy disks

Select the disk file you want to use for the read or write
operation and press:

SHIFT –R To copy a floppy disk to the disk file

SHIFT –W To copy the disk file to a floppy disk

Format floppy disk

Press SHIFT –F to format a floppy disk.

Options:

0-3 Drive number selection
T Change number of tracks (35, 40 or 80)
S Toggle between single, side 2 and double-sided

disk
V Verify disk (Format command only)

Side(s) option:

Single Single sided disk
Side 2 Side 2 of a double-sided disk
Double Double-sided disk (OS-9, FLEX)

NOTE: Drive 3 cannot be selected with Side 2 and Double
side option. It is recommended that you use SDC-DOS 1.5
or later for floppy drive operations. On earlier versions of
SDC-DOS, the floppy drive motor would fail to shut-off
after a copy operation.

Floppy disk directory

The floppy disk directory can be displayed with the
SHIFT –D command. Side selection can be toggled with

the S key.

Limitations
• Creates 40 tracks disks only (no SDF yet)
• Can only delete empty directories (CoCo SDC

limitation)
• Limit of 400 files per directory

COCO SDC | 19

6 About File Formats

The CoCo SDC supports four different disk image formats. The primary format is referred to as the DSK format and
can be used for the imaging of both floppy disks and hard disks. The secondary format, known as SDF, was created
specifically for the CoCo SDC and is used for imaging floppy disks only. The third is the JVC format. The fourth is VDK,
popular for use with Dragon emulators.

No special name or extension need be assigned to an image file for the purpose of format determination. When a disk
image is mounted the firmware detects which format the image uses by examining the file to see if it contains an SDF
format signature. Nevertheless it is recommended that an extension which is indicative of the image format be used for
identification by humans.

DSK Images

The DSK image format is named for the extension most commonly appearing on such files. Images in this format consist
of a simple sector array with each sector being 256 bytes in length. This is the most common format used in the CoCo
world.

In order to be recognized as a valid DSK image, the file size must be an exact multiple of 256 bytes. The minimum file
size is 82,944 bytes which is equal to 324 sectors or 18 tracks of a single-sided CoCo disk (enough to accommodate the
Disk BASIC directory track).

The disk geometry associated with a DSK image is determined by the file size. For floppy images the number of sectors
per track is always 18. There are either one or two tracks per cylinder (equal to the number of sides) and a maximum of
80 cylinders. The largest file size for a floppy image is 737,280 bytes or 2880 sectors (double-sided 80 cylinders).

20 | Chapter 6

Disk Geometry Table for DSK Images

File Size in Bytes Sectors Disk Type Cylinders Sides
Less than 82,944 <324 Invalid
184,320 or less ≤ 720 FD 40 1
368,640 or less ≤ 1440 FD 40 2
737,280 or less ≤ 2880 FD 80 2
737,536 or more > 2880 HD 80* 1*

* only when accessed through the floppy interface mode

An image with more than 2880 sectors is considered to be a hard disk. If a hard disk image is accessed using the floppy
interface mode, only the first 1440 sectors can be used. In this situation those sectors are accessible as a single-sided 80
track floppy disk. The controller’s LBA interface mode must be used to access sectors beyond the first 1440 in a hard
disk image.

JVC Images

This disk image format is an array of sectors with a 1 to 4 byte header prepended to the front. The header bytes are
described in the following table:

Byte Offset Length Description Default Value
0 1 Sectors Per Track 18
1 1 Side Count 1
2 1 Sector Size Code 1 (256 bytes per sector)
3 1 First Sector ID 1

All of the bytes are optional, but are interpreted in the order listed in the table. If omitted their default values are
assumed. The CoCo SDC requires the Sectors Per Track to be 18, and the Sector Size Code to be 1. It will honor a Side
Count of 1 or 2.

Sector Size Code Meaning
0 128 bytes per sector
1 256 bytes per sector
2 512 bytes per sector
3 1024 bytes per sector

COCO SDC | 21

VDK Images

This is also an array of sectors prepended by a header.

Byte Offset Length Description
0 2 ASCII ‘d’ and ‘k’.
2 2 Header size (little-endian).
4 1 Version of VDK format.
5 1 Backwards compatibility version.
6 1 Identity of file source.
7 1 Version of file source.
8 1 Number of tracks.
9 1 Number of sides.
10 1 Flags:

Bit Meaning Bit Meaning
0 Write Protect 1 Advisory lock
2 Mandatory Lock 3 Disk Set
4 Unused 5 Unused
6 Unused 7 Unused

11 1 Compression flags and name length.

The CoCo SDC will honor a Number Of Sides value of 1 or 2. It will also honor the Write Protect bit.

SDF Images

The SDF image format is used to represent floppy disks that have a non-standard layout which is anything other than 18
sectors per track and 256 bytes per sector using standard numbering of the tracks and sectors. The SDF format is similar
to the DMK format supported by most CoCo emulators. It has been augmented to provide better performance within
the limited resources of the Atmega328 micro controller.

The dmk2sdf program has been created for converting a DMK image to the SDF format. A Win32 command line
executable along with the ANSI C source code can be downloaded using the link: https://goo.gl/q61D6s.

SDF File Format

An SDF file consists of a header followed by a variably-sized array of track records. The track records are arranged in
ascending order corresponding to their physical position on the disk (cylinder and side).

22 | Chapter 6

SDF FILE

File Header
Single-Sided
Track Order

Double-Sided
Track Order

Cylinder 0

Cylinder 1

Cylinder 2

Cylinder 3

Cylinder 0 / Side 0

Cylinder 0 / Side 1

Cylinder 1 / Side 0

Cylinder 1 / Side 1

Track
Records

512
bytes

SDF Track Records

6656 bytes
per Track

•
•
•

•
•
•

Contents of the SDF 512 byte File Header

Byte Offset Length in Bytes Description
0 4 Format signature and version string. The ASCII characters ‘SDF1’ appear at the

beginning of the file to identify it as a version 1 SDF image. The numeric character
may be incremented in future versions.

4 1 Number of cylinders (80 max).
5 1 Number of sides (1 or 2).
6 1 Write permission: 0x00 = Read/Write ; 0xFF = Read-Only.
7 1 Nested sectors flag: 0x00 = NO ; 0x01 = YES. This byte is set to 0x01 if the disk

is known to use a copy-protection scheme in which the ID field for one sector is
contained within the Data field of another.

8 504 Reserved. All remaining bytes in the header should be set to zero.

Following the File Header is the array of Track Records. Each track record begins with a 256 byte header and is then
followed by 6250 bytes of raw track data. There are 150 bytes of unused padding at the end of a track record which are
included to align every track on a 512 byte boundary within the file.

SDF Track Record

Track Header
Sector

ID Table

Sector Entry 0

Sector Entry 1

Sector Entry 2

Sector Entry 30

•••

Track Header
Info Record

Sector
ID Table

Raw
Track Data

Padding

256
bytes

8 bytes

248
bytes

6250
bytes

150
bytes

8 bytes
per Entry

COCO SDC | 23

The fixed track size of 6250 bytes can accommodate either a single-density (125 kbps) or double-density (250 kbps)
track at 300 rpm. The SDF format does NOT support 8 inch floppy disks or high density (500 kbps) images.

Any part of a track which is recorded in single-density has each byte written twice in succession. This preserves the
correct spacing of data on mixed-density tracks.

Contents of the SDF 256 byte Track Header

Byte Offset Length in Bytes Description
0 1 Number of used entries in the Sector ID Table.
1 7 Reserved. All seven of the remaining Info Record bytes should be set to zero.
8 248 Sector ID Table.

Each entry in the Sector ID Table is 8 bytes in length and contains information about one sector recorded on the track.
The total size of the table is 248 bytes and can accommodate a maximum of 31 sector entries for a single track. All used
entries must appear sequentially from the beginning of the table. The unused entries must be filled with zeroes and
placed at the end of the table.

Byte Offset Length in Bytes Description
0 2 The 14 low-order bits of this 16 bit field contain the offset from the beginning of the

Track Record to the first byte of the sector’s ID field within the raw track data.

The two high-order bits (14 and 15) are used as flags. Bit 14 is set for a sector
recorded in single-density. Bit 15 is set if the ID field has an incorrect CRC.

This 16 bit integer field is stored in little-endian order (LSB first).
2 2 The 14 low-order bits of this 16 bit field contain the offset from the beginning of the

Track Record to the first byte of the sector’s Data field within the raw track data.

The two high-order bits (14 and 15) are used as flags. Bit 14 is set if the sector’s Data
field uses a Deleted Data Mark. Bit 15 is set if the Data field has an incorrect CRC.

This 16 bit integer field is stored in little-endian order (LSB first).
4 1 The Track Number byte copied from the sector’s ID field.
5 1 The Side Number byte copied from the sector’s ID field.
6 1 The Sector Number byte copied from the sector’s ID field.
7 1 The Size Code byte copied from the sector’s ID field.

24 | Chapter 6

COCO SDC | 25

7 Command Reference7 Command Reference

This chapter describes the commands which can be sent
to the CoCo SDC hardware from the Color Computer.
The accompanying source code file (CommSDC.asm)
contains an assembly language subroutine which is used
to implement the low-level hardware communications
protocol. This document should be used as a reference for
making calls to the CommSDC subroutine.

Calling CommSDC to Send Commands and
Receive Responses

A command sent to the CoCo SDC consists of a single-
byte command code plus 0 to 3 parameter bytes depending
on the specific command. Many commands require a 256
byte block of data to be sent as well. When required, the
data block is typically used to provide a null-terminated
ASCII command string. Any data following the NULL
byte (0) in a command string will be ignored by the
controller, but a complete block of 256 bytes is always sent.

In response to a command, the CoCo SDC provides a
status byte indicating success or failure. Depending on
the specific command, the CoCo SDC also returns 0 to 3
response bytes and/or a 256 byte block of data.

The command code and parameter/response bytes are
transferred through hardware registers at addresses $FF48
to $FF4B. However, when calling the provided CommSDC
sub-routine you do not write the values directly in the
hardware registers. Instead, you pass the command code
in accumulator A, the first parameter byte in accumulator
B and the 2nd and 3rd bytes in index register X (2nd byte
in the upper half of X, 3rd byte in the lower half).

For commands which accept or return a data block, you
must also pass the address of a buffer in user stack pointer
(U). For those commands which return a data block,
you may instead pass $FFFF to indicate that you are not
interested in receiving the data.

For all commands, the subroutine returns with the status
bits in accumulator B. The Carry flag will also be set if any
error occurred. If you need to obtain any of the other 3
response bytes then you must read them directly from the
hardware registers.

Path Names for Files and Directories on the
SD Card

Many commands require that you pass a path name for a
file or directory on the SD card as part of the command
string. Each component in the path (file or directory)
must conform to the MS-DOS 8.3 naming conventions.
Each component is separated by a single forward slash
character (/). A path is considered to be an absolute path
(starting in the root directory) if the very first character is
a slash, otherwise the path is considered to be relative to
the Current Directory. The “.” and “..” entries of a sub-
directory may also be used in a path name to represent the
current path location and the parent directory respectively.

26 | Chapter 7

Mount Image

To mount a disk image into one of the virtual drive slots
you send a data block to the controller containing an
ASCII command string which identifies the target file.
The first two characters of the command string are “M:”
and are followed by the path name of the file. The string is
terminated with a null byte (0). The total size of the string,
including “M:” and the null terminator cannot be more
than 256 bytes.

Passing a command string without a path name
(consisting only of “M:”) will effectively eject whatever
image may be mounted in the virtual drive at that time.

There is an additional option for mounting a file as a raw
array of blocks rather than specifically as a disk image.
This is achieved by using a lowercase ‘m’ in the command
string.

When mounting a file of raw blocks, no attempt is made to
recognize any JVC, VDK or SDF header within the file and
no minimum file size restriction is enforced. The file’s data
can be accessed through the READ/WRITE LOGICAL
SECTOR commands or the STREAM command. Access
through FDC emulation is not supported.

Mount Image
Command Code: $E0 or $E1 (drive number in bit 0)
Additional Parameters: None
Data Block Sent:

0-1 $4D $3A (M:) or $6D $3A (m:)
2-255 254 bytes containing the null-terminated path string.

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if path name is invalid
set on miscellaneous hardware errors

set if target �le not found
set if target �le is already in use

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Mount New Image

Possibly creates and mounts a disk image into one of the
virtual drive slots. This command is nearly the same as the
Mount Image command with the difference being that the
specified image file will be created if it does not already
exist. You send a data block to the controller containing
an ASCII command string which identifies the target file.
The first two characters of the command string are “N:”
and are followed by the path name of the file. The string is
terminated with a null byte (0). The total size of the string,
including “N:” and the null terminator cannot be more
than 256 bytes.

Two additional values must be passed as parameters. To
create a DSK file that initially contains 630 sectors (Single
sided 35 tracks) pass 0 in both the B and X registers. To
create an SDF image you pass the number of cylinders (1-
80) in B and the number of sides (1-2) in the high-order
half of X.

There is an additional option for mounting a new file as
a raw array of blocks rather than specifically new a disk
image. Using a lowercase ‘n’ ($6E) in the command string
will create a new empty file and mount it for access as a
raw array of blocks.

Mount New Image
Command Code: $E0 or $E1 (drive number in bit 0)
Additional Parameters:

$FF49 B 0 for DSK image, number of cylinders for SDF
$FF4A X.H 0 for DSK image, number of sides for SDF image
$FF4B X.L 0

Data Block Sent:
0-1 $4E $3A (N:) or $6E $3A (n:)
2-255 254 bytes containing the null-terminated path string.

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if path name is invalid
set on miscellaneous hardware errors

set if target �le is already in use
set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

COCO SDC | 27

Get Info for Mounted Image

Retrieves information about the disk image file that is
currently mounted in one of the virtual drive slots. This
command returns a 256 byte data block. The first 32 bytes
of the block contain a copy of the image file’s directory
entry record from the SD card. The remaining bytes are
filled with zeroes.

Get Info for Mounted Image
Command Code: $C0 or $C1 (drive number in bit 0)
Additional Parameters:

$FF49 B $49 (I)

Data Block Sent: None
Data Block Returned:

256 bytes with a directory record in the first 32 bytes
0-7 File Name
8-10 Extension
11 Attribute Bits:

$10 Directory
$04 SDF Format
$02 Hidden
$01 Locked

28-31 File Size in bytes (LSB first)

Response Bytes Returned: None
Status:

7

set if no image �le is mounted

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

ready
busy

Query the Size of a DSK Image

Retrieve the number of 256 byte sectors contained in the
disk image file that is currently mounted in one of the
virtual drive slots. Note that the value returned is simply
the size of the file divided by 256 and is therefore not
accurate for images using the SDF format.

Query the Size of a DSK Image
Command Code: $C0 or $C1 (drive number in bit 0)
Additional Parameters:

$FF49 B $51 (Q)

Data Block Sent: None
Data Block Returned: None
Response Bytes Returned:

$FF49 Sector count high byte
$FF4A Sector count middle byte
$FF4B Sector count low byte

Status:

7

set if no image �le is mounted

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

28 | Chapter 7

Set Current Directory

To set the Current Directory for the SD card (the directory
from which relative path names originate), you send a data
block to the controller containing an ASCII command
string which identifies the target directory. The first
two characters of the command string are “D:” and are
followed by the path name of the directory. The string is
terminated with a null byte (0). The total size of the string,
including “D:” and the null terminator cannot be more
than 256 bytes.

Set Current Directory
Command Code: $E0
Additional Parameters: None
Data Block Sent:

0-1 $44 $3A (D:)
2-255 254 bytes containing the null-terminated path string.

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if path name is invalid
set on miscellaneous hardware errors

set if target directory not found
set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Get Current Directory

Retrieves information about the Current Directory for the
SD card. This command returns a 256 byte data block. The
first 32 bytes of the block contain a copy of the directory
entry record from the SD card. The remaining bytes are
filled with zeroes.

If the Current Directory is the root directory then the 11
bytes which make up the name and extension fields will all
be zeroes and bits 4 and 7 of the Status register will be set.

Note that this command only retrieves the leaf name
of the current directory, not the full path. It is possible
to construct the full path of the current directory by
using the Set Current Directory command to walk up
the directory hierarchy one step at a time (using “..”),
retrieving each name along the way. Once you have the
full path you can use it to restore the Current Directory to
its original location.

Get Current Directory
Command Code: $C0
Additional Parameters:

$FF49 B $43 (C)

Data Block Sent: None
Data Block Returned:

256 bytes with a directory record in the first 32 bytes
0-7 File Name
8-10 Extension
12-31 Private

Response Bytes Returned: None
Status:

7

set if target directory not found
set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

ready
busy

COCO SDC | 29

Initiate Directory Listing

Begins the process of retrieving a list of items from a
directory on the SD card. This command accepts an
ASCII command string which identifies the target
directory whose contents you wish to retrieve. The first
two characters of the command string are “L:” and are
followed by the path name of the target directory. The
final component of the path name should be a wildcard
pattern that will be used to filter the list of returned items.
Examples of a valid command string are:

L:*.* All items in the current directory
L:GAMES/*.SDF All items with an SDF extension in

the GAMES sub-directory.
After successfully sending this command you will need to
execute one or more Directory Page commands to retrieve
the requested items.

Initiate Directory Listing
Command Code: $E0
Additional Parameters: None
Data Block Sent:

0-1 $4C $3A (L:)
2-255 254 bytes containing the null-terminated path string.

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if path name is invalid
set on miscellaneous hardware errors

set if target directory not found
set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Directory Page

Retrieves one page of items for a directory listing.
After successfully sending an Initiate Directory Listing
command, you will typically send one or more Directory
Page commands to retrieve the records which describe the
matching items from the directory.

This command returns a 256 byte data block which is
divided into 16 records of 16 bytes each. Each record
describes one item.

If there are not enough items to fill the entire page then
unused records are filled with zeroes. You may continue
to send commands for additional pages until a page
containing at least one unused record is returned. You
are not required to send a command for every page of the
listing. You can stop at any time.

Directory Page
Command Code: $C0
Additional Parameters:

$FF49 B $3E (>)

Data Block Sent: None
Data Block Returned:

256 bytes containing an array of 16 directory records
0-7 File Name
8-10 Extension
11 Attribute Bits:

$10 Directory
$02 Hidden
$01 Locked

12-15 Size in bytes (MSB first)

Response Bytes Returned: None
Status:

7

set if a listing has not been initiated
set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

ready
busy

30 | Chapter 7

Create New Directory

Creates a new directory on the SD card. This command
accepts a data block containing an ASCII command
identifying the name and location of the new directory.
The first two characters of the command string are “K:”
and are followed by the path name for the directory. The
string is terminated with a null byte (0). The total size of
the string, including “K:” and the null terminator cannot
be more than 256 bytes.

The command will only create the single directory
identified by the leaf component in the path name. Any
directories listed in the path name preceding the leaf must
already exist.

Create New Directory
Command Code: $E0
Additional Parameters: None
Data Block Sent:

0-1 $4B $3A (K:)
2-255 254 bytes containing the null-terminated path string.

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if path name is invalid
set on miscellaneous hardware errors

set if parent directory not found
set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Delete File or Directory

Deletes a file or an empty directory from the SD card.
This command accepts a data block containing an ASCII
command identifying the name and location of the target
object to delete. The first two characters of the command
string are “X:” and are followed by the path name of the
file or directory. The string is terminated with a null byte
(0). The total size of the string, including “X:” and the null
terminator cannot be more than 256 bytes.

When deleting a directory, the command will fail if any
files or sub-directories currently reside within the target.

Delete File or Directory
Command Code: $E0
Additional Parameters: None
Data Block Sent:

0-1 $58 $3A (X:)
2-255 254 bytes containing the null-terminated path string.

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if path name is invalid
set on miscellaneous hardware errors

set if target �le or directory not found
set if target directory is not empty

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

COCO SDC | 31

Read Logical Sector

Reads a single 256 byte sector from a mounted disk image.
This command requires a 24-bit Logical Sector Number
for the input parameters and returns the 256 bytes of
data from the corresponding sector of the disk image file
mounted in virtual drive 0 or 1.

Setting bit 1 of the command code tells the controller that
the Logical Sector Number provided assumes the disk
image is that of a single-sided floppy disk. That is to say,
an LSN of 18 is meant to refer to sector 1 on the first side
of track 1 rather than sector 1 on the 2nd sided of track
0. If the mounted disk image is actually that of a double-
sided floppy disk, the controller will automatically adjust
the LSN to reference the intended sector. That is to say, an
LSN of 18 would be internally adjusted to 36 if the disk
image is for a double-sided floppy disk.

Setting bit 2 of the command code is not supported by
the provided subroutine in CommSDC.asm. But if you
are writing your own low level I/O subroutine this may
be useful on the HD6309. That microprocessor’s TFM
instruction can only process 1 byte at a time.

If a CRC error occurs in the ID field, then bits 4 and 7 are
also set indicating that the sector could not be found. With
SDF images, a CRC error occurring in the sector’s Data
Field will result in status bits 3 and 7 being set, but only
after the data has been read.

If the sector uses a Deleted Data Mark then status bit 5 is
set immediately and the data is made available for reading.
Since this is not actually an error condition, status bit 7 is
not set in this circumstance.

Read Logical Sector
Command Code: $8x

7

drive number
single sided LSN �ag

6 5 4 3 2
1 0 0 0 0

1 0
$80 $40 $20 $10 $08 $04 $02 $01

clear for 16 bit transfers in $FF4A and $FF4B
set for 8 bit transfers in $FF4B

Additional Parameters:
$FF49 B high-order byte of LSN
$FF4A:$FF4B X low-order word of LSN

Data Block Sent: None
Data Block Returned:

256 bytes containing the sector data

Response Bytes Returned: None
Status:

7

set if invalid LSN or no image mounted

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

ready
busy

CRC error

sector uses deleted data mark

32 | Chapter 7

Write Logical Sector

Writes a single 256 byte sector to a mounted disk image.
This command accepts a 24-bit Logical Sector Number
as the input parameters and the 256 byte data block
containing the sector data .

Setting bit 1 of the command code tells the controller that
the Logical Sector Number provided assumes the disk
image is that of a single-sided floppy disk. That is to say,
an LSN of 18 is meant to refer to sector 1 on the first side
of track 1 rather than sector 1 on the 2nd sided of track
0. If the mounted disk image is actually that of a double-
sided floppy disk, the controller will automatically adjust
the LSN to reference the intended sector. That is to say, an
LSN of 18 would be internally adjusted to 36 if the disk
image is for a double-sided floppy disk.

Setting bit 3 of the command code is not supported by
the provided subroutine in CommSDC.asm. But if you
are writing your own low level I/O subroutine this may
be useful on the HD6309. That microprocessor’s TFM
instruction can only process 1 byte at a time.

Write Logical Sector
Command Code: $Ax

7

drive number
single sided LSN �ag

6 5 4 3 2
1 0 1 0 0

1 0
$80 $40 $20 $10 $08 $04 $02 $01

clear for 16 bit transfers in $FF4A and $FF4B
set for 8 bit transfers in $FF4B

Additional Parameters:
$FF49 B high-order byte of LSN
$FF4A:$FF4B X low-order word of LSN

Data Block Sent:
256 bytes containing the sector data

Data Block Returned: None
Response Bytes Returned: None
Status:

7

set if invalid LSN or no image mounted

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

set if image is write protected

busy

Low-Level Stream

There is a special streaming mode that exists within the
SDC. First a file has to be mounted in drive 0 or 1. It then
persorms a continous read of the file’s data in blocks of 512
bytes. This is the SD card’s native block size.

The command codes $90 and $91 will let you turn on
streaming for either drive 0 or drive 1. When this mode is
entered, 512 byte low level sectors will be made available
on the data port. One sector after another. The first block
can be set by writing the 24 bit block number to the three
parameter registers. Polling for the READY status bit is
required for the first byte of each 512 byte block.

The process will end when the last sector is transferred
and the busy bit is cleared.

To stop transferring early you can send the abort stream
command: $D0.

The StreamTest.asm file at the end of this chapter to can be
used as an example.

Stream
Command Code: $9X

7

drive number
Clear for 16 bit transfers in $FF4A and $FF4B
Set for 8 bit transfers in $FF4B

6 5 4 3 2
1 0 0 1 0 0

1 0
$80 $40 $20 $10 $08 $04 $02 $01

Additional Parameters:
$FF49 High byte of block number
$FF4A Middle byte of block number
$FF4B Low byte of block number

Data Block Sent: None
Data Block Returned:

512 bytes containing the sector data of the SD Card

Response Bytes Returned: None
Status:

7

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy
ready

COCO SDC | 33

Abort Stream

Issue this command to abort the stream.

Abort Stream
Command Code: $D0
Additional Parameters: None
Data Block Sent: None
Data Block Returned: None
Response Bytes Returned: None
Status:

7

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Mount Next Disk In Set

Searches the current Disk Set folder for a file with the next
higher numeric suffix (‘9’ max). If none found, searches
for a file with a numeric suffix of ‘1’. When a file is found,
an attempt is made to mount the file as a disk image. On
success, the LED is blinked the same number of times as
the file’s numeric suffix. This command is equivalent to
pressing the button on the CoCo-SDC hardware.

Mount Next Disk in Set
Command Code: $C0
Additional Parameters:

$FF49 B $2B (+)

Data Block Sent: None
Data Block Returned: None
Response Bytes Returned: None
Status:

7

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Mount Disk In Set

Searches the current Disk Set folder for a file either with
the next higher numeric suffix (FF4A=0) or a specific
numeric suffix (FF4A=1..9). When a file is found, an
attempt is made to mount the file as a disk image. On
success, the LED may optionally blink (FF4B=1) the same
number of times as the file’s numeric suffix.

Mount Disk in Set
Command Code: $D0
Additional Parameters: None

$FF49 B $23 (#)
$FF4A X.H 0:Next Disk, 1-9:Specific Disk
$FF4B X.L bit 0: 1 = Blink enable

Data Block Sent: None
Data Block Returned: None
Response Bytes Returned: None
Status:

7

set on any failure

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy
set on �le not found

34 | Chapter 7

Version Number

Returns the firmware’s version number as a 16-bit
BCD value. Versions prior to 113 did not support this
command and will fail with status bit 7 set. This is useful
for determining if a particular command or feature is
available. Refer to the Firmware Version History table at
the end of this manual.

Version
Command Code: $C0
Additional Parameters: None

$FF49 B $56 (V)

Data Block Sent: None
Data Block Returned: None
Response Bytes Returned:

$FF49 undefined
$FF4A first two digits of version number (BCD)
$FF4B last two digits of version number (BCD)

Status:

7

set if command is not supported

6 5 4 3 2 1 0
$80 $40 $20 $10 $08 $04 $02 $01

busy

Low-Level Hardware Interface

This section describes the low-level details for
communicating directly with the CoCo SDC hardware.
Source code for the CommSDC sub-routine which
handles these details has been made available. You should
refer to that source code as an example of the information
presented here. It is not necessary to understand this
information in order to simply use the CommSDC code. It
is provided for completeness.

The following steps outline the protocol used to execute a
command:
1. Place controller in Command Mode.
2. Wait for the controller to clear the BUSY status bit.
3. Write any required command parameters to the

hardware registers.
4. Write the command code to the command register.
5. If required, send 256 bytes of command data or retrieve

256 bytes of response data.
6. Wait for the command to complete by polling the BUSY

bit in the status register.
7. Return the controller to FDC Emulation Mode.

8. Examine the status value and read any response bytes
returned in the hardware registers.

1. Enabling Command Mode

The CoCo SDC normally operates in FDC Emulation
Mode. This makes it appear to the CoCo that a standard
floppy disk controller is present. To execute any of the
extended commands, the hardware must first be placed
in Command Mode. To do this you store the value $43 in
the control latch at $FF40. This value would not normally
be used with a real floppy controller and so it is used to
signal to the controller that it should treat any commands
it receives as SDC-specific.

2. Waiting for the Controller to be Not Busy.

After enabling Command Mode the BUSY bit may be set
for as long a 2.5 seconds (worst case scenario). You must
wait for this bit to clear before issuing a command to the
controller.

3. Setup the Command Parameters.

Store any required parameter bytes related to the specific
command into the hardware registers at $FF49, $FF4A
and $FF4B. These registers can be set in any order and
you may use a 16-bit instruction like STD to write to two
consecutive register locations.

4. Invoke the Command.

Once the parameter registers have been set up you can
write the command code to the command register at
$FF48. After writing to the command register you should
not access any of the hardware registers for at least 20
microseconds.

5. Perform a Data Block transfer.

Most commands require more data than can be passed
in the three parameter registers. These commands accept
a 256 byte data block which is sent to the controller two
bytes at a time through a pair of data registers at $FF4A
and $FF4B. Before sending the first pair of bytes you must
poll the status register for the READY or FAILED bits. If
the FAILED bit is set then something went wrong and the
command was terminated prematurely.

When the READY bit is set you may proceed to write the
data. For each pair of bytes, the first must be written to
$FF4A before the second is written to $FF4B. You may
also use a 16-bit instruction like STD to write both bytes
at the same time. It is not necessary to poll for READY on
each subsequent pair of bytes.

COCO SDC | 35

Commands which do not accept a data block as input may
instead provide a data block as a response. In these cases,
the READY bit indicates that the data block is available to
be read, two bytes at a time through the same pair of data
registers ($FF4A and $FF4B).

When the READY bit is set you may proceed to read the
data. For each pair of bytes, the first must be read from
$FF4A before the second is read from $FF4B. You may
also use a 16-bit instruction like LDD to read both bytes
at the same time. It is not necessary to poll for READY on
each subsequent pair of bytes.

6. Wait for Command Completion.

The controller will require some time to complete
execution of the command. You should wait for the BUSY
bit in the status register to clear before proceeding. If an
error occurs during execution, the FAILED bit will be set
in the status register. Other bits in the status register may
also be set to indicate a specific type of failure (see the
command descriptions).

7. Put Controller back into Emulation Mode.

After execution of each command, you should put the
controller back into FDC emulation mode by writing 0 to
the control latch at $FF40.

8. Retrieve Status and Response Bytes.

Examine the value in the status register to determine if
the command was successful. If the command provides
any response bytes you may now read them from the three
register locations at $FF49, $FF4A and $FF4B.

36 | Chapter 7

**
* Filename: CommSDC.asm
* CoCo SDC Low-level interface routine
*
* Hardware Addressing - CoCo Scheme
CTRLATCH equ $FF40 controller latch (write)
CMDREG equ $FF48 command register (write)
STATREG equ $FF48 status register (read)
PREG1 equ $FF49 param register 1
PREG2 equ $FF4A param register 2
PREG3 equ $FF4B param register 3
DATREGA equ PREG2 first data register
DATREGB equ PREG3 second data register

* Status Register Masks
BUSY equ %00000001 set while a command is executing
READY equ %00000010 set when ready for a data transfer
FAILED equ %10000000 set on command failure

* Mode and Command Values
CMDMODE equ $43 control latch value to enable command mode
CMDREAD equ $80 read logical sector
CMDWRITE equ $A0 write logical sector
CMDEX equ $C0 extended command
CMDEXD equ $E0 extended command with data block

*--
* CommSDC
*
* This is the core routine used for all
* transactions with the SDC controller.
*
* Entry:
* A = Command code
* B = LSN hi byte or First parameter byte
* X = LSN lo word or 2nd and third parameter bytes
* U = Address of 256 byte I/O buffer ($FFFF = none)
*
* Exit:
* Carry set on error.
* B = controller status code.
* A, X, Y and U are preserved.
*
CommSDC pshs u,y,x,a,cc preserve registers
 lsr ,s shift carry flag out of saved CC

* Put controller in Command mode
 ldy #DATREGA setup Y for hardware addressing
 lda #CMDMODE the magic number
 sta -10,y send to control latch (FF40)

COCO SDC | 37

* Put input parameters into the hardware registers.
* It does no harm to put random data in the
* registers for commands which do not use them.
 stb -1,y high byte to param reg 1
 stx ,y low word to param regs 2 and 3

* Wait for Not Busy.
 bsr waitForIt run polling loop
 bcs cmdExit exit if error or timeout

* Send command to controller
 lda 1,s get preserved command code from stack
 sta -2,y send to command register (FF48)

* Determine if a data block needs to be sent.
* Any command which requires a data block will
* have bit 5 set in the command code.
 bita #$20 test the “send block” command bit
 beq rxBlock branch if no block to send

* Wait for Ready to send
 bsr waitForIt run polling loop
 bcs cmdExit exit if error or timeout
 leax ,u move data address to X

* Send 256 bytes of data
 ldd #32*256+8 32 chunks of 8 bytes
txChunk ldu ,x send one chunk...
 stu ,y
 ldu 2,x
 stu ,y
 ldu 4,x
 stu ,y
 ldu 6,x
 stu ,y
 abx point X at next chunk
 deca decrement chunk counter
 bne txChunk loop until all 256 bytes sent

* Wait for command completion
 lda #5 timeout retries
waitCmplt bsr waitForIt run polling loop
 bitb #BUSY test BUSY bit
 beq cmdExit exit if completed
 deca decrement retry counter
 bne waitCmplt repeat until 0
 coma set carry for timeout error
 bra cmdExit exit

* For commands which return a 256 byte response block the

38 | Chapter 7

* controller will set the READY bit in the Status register
* when it has the data ready for transfer. For commands
* which do not return a response block the BUSY bit will
* be cleared to indicate that the command has completed.
*
rxBlock bsr longWait run long status polling loop
 bls cmdExit exit if error, timeout or completed
 leax 1,u test the provided buffer address
 beq cmdExit exit if “no buffer” ($FFFF)
 leax ,u move data address to X

* Read 256 bytes of data
 ldd #32*256+8 32 chunks of 8 bytes
rxChunk ldu ,y read one chunk...
 stu ,x
 ldu ,y
 stu 2,x
 ldu ,y
 stu 4,x
 ldu ,y
 stu 6,x
 abx update X for next chunk
 deca decrement chunk counter
 bne rxChunk loop until all 256 bytes transferred
 clrb status code for SUCCESS, clear carry

* Exit
cmdExit rol ,s rotate carry into saved CC on stack
 clr -10,y end command mode
 puls cc,a,x,y,u,pc restore irq masks, update carry and return

*--
* Wait for controller status to indicate either “Not Busy” or “Ready”.
* Will time out if neither condition satisfied within a suitable period.
*
* Exit:
* CC.C set on error or time out.
* CC.Z set on “Not Busy” status (if carry cleared).
* B = status
* X is clobbered. A, Y and U are preserved.
*
longWait bsr waitForIt enter here for doubled timeout
 bcc waitRet return if cleared in 1st pass
waitForIt ldx #0 setup timeout counter
waitLp comb set carry for assumed FAIL
 ldb -2,y read status
 bmi waitRet return if FAILED
 lsrb BUSY --> Carry
 bcc waitDone branch if not busy
 bitb #READY/2 test READY (shifted)

COCO SDC | 39

 bne waitRdy branch if ready for transfer
 bsr waitRet consume some time
 ldb #$81 status = timeout
 leax ,-x decrement timeout counter
 beq waitRet return if timed out
 bra waitLp try again

waitDone clrb Not Busy: status = 0, set Z
waitRdy rolb On Ready: clear C and Z
waitRet rts return

*--

 END

**
* Filename: StreamTest.asm
* Test routine for the SDC Continuous Stream.
*

* Hardware Addressing - CoCo Scheme
CTRLATCH equ $FF40 controller latch (write)
CMDREG equ $FF48 command register (write)
STATREG equ $FF48 status register (read)
PREG1 equ $FF49 param register 1
PREG2 equ $FF4A param register 2
PREG3 equ $FF4B param register 3
DATREGA equ PREG2 first data register
DATREGB equ PREG3 second data register

* Status Register Masks
BUSY equ %00000001 set while a command is executing
READY equ %00000010 set when ready for a data transfer
FAILED equ %10000000 set on command failure

* Mode and Command Values
CMDMODE equ $43 command mode setting for control latch
CMDSTREAM equ $90 continuous read of 512 byte blocks
CMDABORT equ $D0 abort I/O command

 org $4000

StreamSDC ldy #DATREGA setup Y for hardware addressing
 lda #CMDMODE the magic number
 sta CTRLATCH send to control latch (FF40)

40 | Chapter 7

 lda #BUSY status mask
mPoll bita -2,y poll BUSY flag
 bne mPoll loop while controller is busy

* Set starting block number to 0.
 clr -1,y high param
 clr 0,y mid param
 clr 1,y low param

* Send command to the controller
 lda #CMDSTREAM+1 stream from drive 1 using classic method
 sta CMDREG send to command register

* Prepare for BREAK key tests
 ldb #$FB strobe the keyboard column..
 stb $FF02 ..which contains the BREAK key

* Loop to read the file blocks
blockLoop ldx #$0400+16 buffer address + 16
bPoll ldb -2,y poll status
 asrb BUSY --> carry
 bcc streamDone exit if BUSY cleared
 beq bPoll continue polling if not READY

*
* Partially unrolled transfer loop (32 bytes per iteration).
* Displacements of -16 to +14 utilize full range of 5 bit indexing.
*
 ldd #16*256+32 A = chunk count, B = bytes per chunk
chunkLoop ldu ,y
 stu -16,x
 ldu ,y
 stu -14,x
 ldu ,y
 stu -12,x
 ldu ,y
 stu -10,x
 ldu ,y
 stu -8,x
 ldu ,y
 stu -6,x
 ldu ,y
 stu -4,x
 ldu ,y
 stu -2,x
 ldu ,y
 stu ,x
 ldu ,y
 stu 2,x
 ldu ,y
 stu 4,x

COCO SDC | 41

 ldu ,y
 stu 6,x
 ldu ,y
 stu 8,x
 ldu ,y
 stu 10,x
 ldu ,y
 stu 12,x
 ldu ,y
 stu 14,x
 abx update buffer address for next chunk
 deca decrement chunk counter
 bne chunkLoop loop until all chunks transferred

* Test for BREAK key to abort
 ldb $FF00 get keyboard state
 bitb #$40 test row with the BREAK key
 bne blockLoop loop if BREAK not pressed
 ldb #CMDABORT send abort I/O command..
 stb CMDREG ..to the controller
 asrb will use CMDABORT for the status result

* Exit
streamDone clr CTRLATCH put controller back in floppy mode
 aslb save controller status in..
 stb $00F0 ..the DSKCON status variable
 rts
 end

42 | Chapter 7

COCO SDC | 43

Glossary
ACIA Asynchronous Communications Interface Adapter
AVR Alf and Vegard’s RISC
BASIC Beginners All-purpose Symbolic Instruction Code
CoCo Color Computer
DIP Dual In-line Package switches and chips
DOS Disk Operating System
DriveWire A tool to network a CoCo with an external computer over serial or emulation ports
DRQ Data Request
EPROM Electronically Programmable Read Only Memory
IDE Integrated Drive Electronics
FAT File Allocation Table
FDC Floppy Disk Controller
FD Floppy Disk
LBA Logical Block Addressing
LED Light Emitting Diode
MicroSD Micro Secure Digital card
MPI Multi-Pak Interface
PC IBM Personal Computer
PCB Printed Circuit Board
RISC Reduced Instruction Set Computing
SCSI Small Computer Systems Interface
SDC Secure Digital Card Controller
SDHC Secure Digital High Capacity
SD Secure Digital Card
SDXC Secure Digital Extended Capacity

Firmware Version History
113 Added the VERSION command.
115 Added the DELETE, RENAME and QUERY DISK SIZE commands as well as the ability to recognize

Dragon VDK images (but only with a 12-byte header).
116 Fixed the recognition of Dragon VDK headers to include headers up to 256 bytes in length.
117 Added the STREAM command.
120 Added the MOUNT NEXT DISK command. It also fixed the QUERY DISK SIZE command. Prior

versions only returned a 16-bit value rather than a 24-bit value (FF49 was always returning 0).
124 Introduced the MOUNT DISK # command and the 8-bit option for WRITE SECTOR.

Index

A
Atmega 2
AUTOEXEC.BAS 13

B
BACKUP 13

C
capacitor 6
Cartridge 15
case 3, 6
CommSDC 25

D
‘D’ and ‘E’ boards 5
DEF DW = n 14
DIP switch 2
DIR 11, 12
Disk Geometry 20
dmk2sdf 21
Dragon 2
DRGN switch 2
DRIVE 9, 12
Drivewire 12, 13
DSKCON 10
DSK format 19

E
Ejecting 12
Enclosure 6
Erasing Banks 15
EXP 14, 18
Explorer utility 14

F
FAT16 3
FAT32 3
Flash 15
Flash memory 1

H
HDB-DOS , 13

I
IDE 1
image formats 19

J
joystick 18
jumper 2
JVC 20

K
KILL 15

L
LED 3, 10
Locking Disk Images 12

M
Motherboard 5
MPI 5. See Multi-Pak Interface
Multi-Pak 5. See Multi-Pak Interface
Multiple Disks 10

N
New Disk Images 12

O
OS9 1

R
Real Floppy 13
RUN 15

S
SCSI 1
SDC-DOS 6, 9, 15
SDC Exporer 14
SDF 19, 20, 21
Startup 9
STARTUP.CFG 7, 11
Stream 32
system reset 2

V
VDK 20

W
Wildcards 10

	What is the CoCo SDC
	Feature Overview
	Features and Specifications
	Jumper Settings
	DIP Switch Settings
	Hardware Guide
	How is the SDC different from competing products?

	Getting Ready For Fun
	The Basics
	D & E Compatibility Issues
	Identifying the problem boards
	Motherboard Modification
	Finding a Suitable Enclosure
	Updating SDC-DOS
	Rescuing After a Failed Update
	Recovery Steps

	Using the SDC
	DRIVE - The Status
	DRIVE – Mounting SD Based Images
	Multiple Disks
	DRIVE – With Wildcards
	DIR
	Setting Current Directory
	Explaining DIR
	Locking Disk Images
	Creating New Disk Images
	Ejecting a Disk Image
	Using the CoCo SDC with DriveWire
	Connecting via the Color Computer
	Accessing Real Floppy Disks
	Automatic Program Execution
	Set Step Rate
	EXP
	DEF DW = n

	Using the Flash
	Running a Cartridge Image
	Erasing Banks and Sectors
	Writing to the Flash
	Copying a Block of Memory
	The GUI editor

	SDC Explorer
	SDC Explorer
	Features
	Command summary
	Joystick support
	Multi-disks Programs
	Auto execute SDCX at startup
	Floppy drive commands (CoCo only)
	Read/Write floppy disks
	Format floppy disk
	Floppy disk directory
	Limitations

	About File Formats
	DSK Images
	Disk Geometry Table for DSK Images
	JVC Images
	VDK Images
	SDF File Format
	Contents of the SDF 512 byte File Header
	Contents of the SDF 256 byte Track Header

	Command Reference
	Calling CommSDC to Send Commands and Receive Responses
	Path Names for Files and Directories on the SD Card
	Mount Image
	Mount New Image
	Get Info for Mounted Image
	Query the Size of a DSK Image
	Set Current Directory
	Get Current Directory
	Initiate Directory Listing
	Directory Page
	Create New Directory
	Delete File or Directory
	Read Logical Sector
	Write Logical Sector
	Low-Level Stream
	Abort Stream
	Mount Next Disk In Set
	Mount Disk In Set
	Version Number
	Low-Level Hardware Interface

