@ MOTOROLA

1.0 MHz)

MC68A29
(1.5 Mitz)

'ty i

Advance Information

MEMORY MANAGEMENT UNIT

The principle function af the MC6829 Memory Management Unit
(MMUI is to sxpand the address space of the MCB809 from 64K bytes to
amaximum of 2 Megabytes. Each MMU is capable of handling four dif-
farent concurrant tasks including DMA. The MMU can also protect the
address spaca of one task from maodification by another task. Mamory
address space expansion is accomplished by applying the uppaer five ad-
dress lines of the precessor {A11-A15) along with tha comtents of a 5-bit
task register to an internal high-speed mapping RAM. The MMU output
consists of ten physical address lines {PA11-PA20) which, when com-
bined with the eleven lower address lines of the processor (AGATD),
forms a physical address space of 2 Megabytes. Each task is assigned
memory in increments of 2K bytes up 1o a 1otal of 84K bytes. In this
manner, the address spaces of differsnt tasks can be kept saparate from
one anather. The resulting simplification of the address space program-
ming model will increasa the sottware raliability of a complex multi-
process system.

@ Expands Memaory Address Space from 64K 1o 2 Megabytas

® Each MMU is Capable of Handbng Four Separate Tasks

Up to Eight MMUs can be Used in a System

#® Provides Task lsolation and Write Protection

@ Provides Efficient Memory Aliccation; 1024 Pages of 2K Bytes Each
® Designed for Efficient Usa with DMA

® Fast, Automatic On-Chip Task Switching

@ Allows Inter-Process Communication Through Shared Resources
@ Simplifies Programming Model of Address Space

® (ncreases System Software Reliability

® MCB809/MCBB00 Bus Compatible

@® Single 5-Valt Power Supply

HMOS

[HIGH DENSITY N-CHANNEL, SILICON-GATE)

MEMORY MANAGEMENT UNIT
{MMUL)

L SUFFIX
CERAMIC PACKAGE
CASE TG

L1 s SUFFAIX
CERDIP PACKAGE
CASE 734

P SUFFIX
PLASTIC PACKAGE
CASE 711

BLOCK DIAGRAM
Magmng RAM
Task 0 Asgy stars

AMTAIS = — — — — = = _— — - - - PAIN-PAIG

Task 3 Regisiors.
Sutout
Task Sniect T T Enabla

Accuas Key

[— BA
Eny Yalue
p— B85

Task

Operate Key Selnct be—— RESET
Logc
le— E
Fuse
F 3 i
DO-D?{/ E—.

ASC-ASE —mf
R/ —-gpl Rogamier
s . MIDDING RAM
VA — Adtreds
PR il

Dals Bus

Loge

PIN ASSIGNMENT

vssffi @ -’ I Pan
A5z el PAa12
A14q 3 s rPa1a
Al3[]4 37PAI4
A12(]s 3s[APAS
EARN 5 BAPA
ARAQ 7 M{IPAT?
RSE{] 8 1fPAIE
RSE(} g 2[rar9
RS4f 1o npraz
RS3fNn wo7
Rs2[]12 291108
rs1[3 28 [105
RS04 21[ica
(73111 %003
afs spoz
eQ1? 21D
Ba[ha 2[00
BS[1e 2fvee
RESET[20 2 pA/w

4-419

MCE829*MC68A29*MCE8B29

MAXIMUM RATINGS

—= This device contains circuitry o protect the in-
Cheracteristics Symbol Velue Unit puts against damage dus o high static voltagas
Supply Voliage Ve -03tw +70 | V or electric fislds, however, it is advised that nor-
Input Valtage Vin 031w +70 | V mal precautions be taken 1o avoid application of
O : R T any voltage higher than mazimum rated voltages
”;'éég‘ggrﬁn"ég:}‘;mméggzs Ta OL::' ;OH o to this high-impedance circuit. Refiability of
MCGBZS&: MCSBA2.9C MCERR29C —4010 +85 oparation is enhanced if unused Inputs are tied to
- - an appropriste logic voltage level (e.g., either
Storage Tempearature Range Tag ~B510 +150 | °C Vss or Vo).
THERMAL CHARACTERISTICS
Symbol Valus Rating
Tharmal Resistance
Plastic 100 5
Cerdip LYY 0 Ciw
Ceramic 50
POWER CONSIDERATIONS
The average chip-junction temperature, T, in °C car be obtained from:
Ty=Ta+{Pped Al i

Whara:
T m Ambient Temperature, °C
84 = Package Thasmal Resistance, Junction-io-Ambient, *C/W
Pp=PiNT + PPORT
PINT=ICC x Vo, Watts — Chip Intarnal Power
PpgRT ™ Port Power Dissipation, Watts — User Determined

Far most applications PPORT < PINT and can be neglected. PpORT may become significant if the davice is configured 10
drive Darlington bases or sink LED loads.

An approximate Telationship betwsen Pp and T (if PPORT is neglectac) is*

Po=KX + (T +273°C) (21
Solving equations 1 and 2 for K gives:
K =Ppe{TA + 273°C) + 6)AvPD2)]

Whera X is a constani pertaining to the particular part. K can be determined from equation 3 by measuring Pp lat equilibrium}
tor a known T 4. Using this valua af K the values of PD and T 1 can be oblained by solving equations 1) and 12) iteratively tor any
valua of T

DC ELECTRICAL CHARACTERISTICS {vpe=5.0 vde +5%, Vg5=0, TA=T|_to TH unless otherwise noted}

Charactecistic Symbol Min Typ Max Unit

Invput High Vpltage All Inputs ViH V55 +20 - Voo v
{nput Low Voltage All Inputs Vi Vg5-03 - Vgg+0.48 v
Input Leakage Current iV n=0105.25 ¥) Voo = Max lin - 1.0 26 pA
Three-State (O Sta1e) Input Cusrent 1V, =0.410 2.4 V] DG-07 iz - 20 10 A
Dutput High Voltage

(gad= — 145 A) DO-D7 YOH Vgs+2.4 - - v

VLo = min PA11-PAZD Vg5+24 — -
Ouiput Low Volage

{lpad =2.0 mA) 007 VoL - - Vgg+0b v

Ve =max PAT1-PA20 - - Vg5+05
intarnal Power Dhssipatcn (Measured at Ta=Ty) PiNT - - 800 mw
TApul Lapaciance [Vip =0, TA = 22°C, 1= 1.5 MH2) Al Tnputs Tio = (1N} TZ0 B
Qurput Capacitance {¥,q =0, Tao=25°C, f= 1 E MHz All Qutpwts | Caut - - 12.0 pF

4-420

MC6829¢MCB8A29¢M (68829

BUS TIMING CHARACTERISTICS (See Notes 1 and 2}

ident. MCOEX | MCOSA2Y | MCHBB29

Number Characreristic Symbol Iin] Wiex | Min | M TMin | Max] U

1 Cycla Time ove 10] 10 j0867] 10 (D6 | 10 | as

2 Pulsa Witdth, € Low PWEL (430 | 9500 | 280 [8500 1210 [9700] ns

3 Pulse Width, E High PWEH | 450 | 9500 | 280 9500 | 220 9700 ns

4 Clock Rise and Fali Time i i _ 25 — 26 — 0 ns

3 Pulse Width, Q High PWaH | 420 | 5000 280 (5000 { 210 | 5000 ns

[:] Pulse Width, (O Low PWoL [450 [9500 280 [9600 220 [9500% ns

7 € ta G Rise Delay Time- 1AVO — | 20| — |16]| - 1%} ns

9 Adrass Hold Time tAH 10 - 10 - 10 - ns

13 Addrass Setup Time Bafore E IAS ac - 60 — a0 — ns

14 Chip Select Setup Time Betora £ tcs a0 - a3 = al - ns

15 Chip Select Hald Tima icH 10] - 0§~ 1w | - |ns

B8 Read Data Held Time OHR 2| 1007 2 00 |20 |100] ns

23 Writa Tiata Hoid Time tDHW 10 - 10 - 10 - ns

) Qutput Data Delay Tirne 'ODRA — 1230} — 1B | - {60 ns

k)| Input Data Setup Time psw | 186 - 80 - 60 ~ | ns
s";;g“;“ Three-State Address Dalay wap [- | w0 | - |8 {-le]as
See Figura 2 | Mapped Address Delay MAD - 20 - J15 P~ |10} ns

" At specifisd cycle tme,
FIGURE 1 — BUS TIMING
() -
N NS
= N / - N
"

e
m‘]

Q % 'S
=<0 +® O —H
R/W. Aodress ¥ \,."\,a\""
INen-Muxed) PAYAN)
‘ 13 } L
‘ 14 } - ——nd
{18 ‘- @
Aead Data MPU Read Data Non-Muxed
Non-Muxad
- @ L——@—b-
Wnite Data K MPL Write Data Non-Muxed a

Non-Maxed

Notes:

1 Voltage levels shown are ¥| 0.4 V, Vyz2.4 V, unless atherwise specified
2. Measurameni ponts shown ara 0.8 V and 2.0 V, unless atherwise specified

4-421

T

" MC6829*MC68A29¢MC68B29

FIGURE 2 — MAP SWITCHING, ADDRESS MAPPING

NI
s ZTTTTTTTTTTTTT R | o T TTTTTT LITT777
o W XTI

pat e //////////////)rAQENE"T"_"—)—(/////////////

h—ta g AD — I

FIGURE 3 — AESET TIMING

e 1 (/11

— 3=

ewnens [/ /1[I

Note: Timing measuremants are rafarenced to and from s low voltage of 0.8 vohs and a high voltage of 2.0 volts, uniess otherwise nated.

4-422

MC6829*MC68A29°MC68B29

PIN DESCRIPTION

The foliowing section describes each pin of the MMU in
detail,

Ve, Vss — Supplies power to the MCBE29. Vg is +5
volts and V5§ is ground.

E — Input E clock [from MCE809).
Q — Input Q clock {from MCEa09).
R/W — Read/Write Line Input; 1= Read, 0= Writg.

D0-D7 — Bi-directionsl Data Bus. The data bus is used
when the MMU registers are to be read or written.

PA11-PA2) -~ Physical Address Lines (Output from
MMU|. The physical agddress lines are generated by the
MMU for every bus cycie. When multiple MMUs are present
in a systam, only one MMU will cutput a physical address.
Each physical address line will drive ona Schottky TTL load
or four LS TTL loads and a maximum of 80 pF.

AS0-R56 — Ragister Select Lines [Access 0 MMU
Registers). When accessing the MMU registers, the register
select lines determine which byte of information is being
referanced within the MMU. Valid addresses are detailed in
the Register Selact Truth Table.

BA, BS — Bus Available and Bus Stats {Inputs). These in-
puts are directly connected from the BA, BS lines of the
MCE809. They provide the MMU with information about the
class of bus operation for each cycle. Mote that when com-
ing out of 8 DMA cycle, the MC6809 BA, BS pins change
back from DMA acknowledge (BA=1, BS=1) to running
IBA=0, BS=0) one cycle befcre the and of the DMA.

RA — Register Access {Chip Select for MMU Registers),
This active low input determines the location of the MMU
registers. Since the MMU registers are only accessible from
the last page of 1ask #0 ($FAO0O-SFFFF), this signat can be
derivad from addrass hnas &10-A7 of the processor. Whan
RA is asserted low, the MMU registers are selected if the
current task number is zero ang A15-A17 are all 1's.

KVA — Key Vaiue Access select line {input). This active
low input enables access to the 3-bit Key Value register on
the MMU. Reading the Key Value Register is allowed only
when the current task is zero, address lines A11-A15 are all
onas, RA=0 {assertad), RS6-RSC are within the range
$40-347 and KVA =0 (also assarted). Writing the Key Value
Registar has the additional requirernent of having the 3-bit
set.

RESET — AESET (Input). A low leval an this input causes
tha MML to initialize its registers 1o a known state. An inter-
nal flag is aiso set which forces $3FF onto the physical ad-
dress lines until the Key Value Register is written.
must ba low for at least one cycle.

MMU OPERATION

For evary processor cycle, the MMU supplies a mapped
address based on the processor address and the current task
numbar {refar tc Figure 4). The cusrent task number is kept
in an on-chip register called the OPERATE KEY. Changing
the value of the operate key causes a new map to be
selected.® The MMU also contains automatic task switching
logic 1o cause pro-defined task numbers to ovarride the 1ask
number in the cperate key for certain avents (Interrupts,
Direct Memory Access, Reset).

The MMU registers always appear as a block of 64 byes
located on the last page of task #0 {refer to Figure 5). When
the registers are accessed, the MMU outputs a physical ad-
dress of $3FF {PA11-PA20 al! high). This is necessary since
the mapping AAM of the MMU cannot map an address and
be modified at the same time.

The exact location cf the MMU registers within the last
page of physical memory is determined by the AEGISTER
ACCESS (RA) signal which is similar t¢ a chip salect line.
The RA signal will normally be derived from processor ad-
dress lines A7-A10 using a simple 4-input gate. For example,
ad-input OR gate would place the MML) registers at $FB00
1o SFB7F. in systems using DMA, the RA input must include
the externally derived DMA/VMA, signal 10 prevent dead bus
cycles from affecting the MMU. Refer 10 Programming Con-
siderations.

Inputs RS0-RS56 10 the MMU ara the register select lines.
These lings are normally connected to the low order address
lines AG-AS from the processor. The MMU raegisters are only
accessible if:
the current 1ask number is zero,
processor address lines AT11-A15 are all 1's;
the Register Access line (AA) is asserted tow;
Ragister Select knes (RSO-RS86) contain a defined
register addraess; and
the Systern Bit {5-bit) is set ifor a write operation
only).

As a result of the above restrictions on accessing the
MMU registers, the portion of the software that sets up and
maintains the mamary maps for gll tasks must run as task
zerg.

The first 84 byles of tha MMU's register area comprise a
"window™ through which any one of the 4 maps may be
viewed or chenged. The task number to be viewed through
this "window” is written into a read/write register cailed the
ACCESS KEY. Thus, to examing or change the map for any
task, the processor must first write the task number into the
Access Key. Once set, the Accass Key will retain its valueg
until explicitly changad.

oW

o

“Haler to Registar Salect Truth Table for exact procedure to change this register.

4-423

MC6829+MC68A29¢MCG8B29

FIGURE 4 — LOGIC-TO-PHYSICAL ADDRESS TRANSLATION DIAGRAM

Logical Address
Task # A5 AITLAT0 AD
|
mterTupt -t Mapping FAM
DMA —i»
' !
PAZD PATI|PAIQ PAQ
Physical Address
FIGURE b — MMU REGISTER MDDEL
Register D7 08 D& D4 D3 D2 [+l DO Logwcal Adgdress
0 PA PAIE
SDO00-07EF
o PAIR PA17 PA1B PAIS PA14 PA13 PAIZ PAY1
a FA0 PAID SDROC-SOFEF
o3 PA18 PAY7 FANG PA15G PA14 Pai3 FA12 PAIT
Access 04 PA20 PAIG
100C-317FF
Koy 05 PA18 PAYT PAS PA1S Pald PAI3 PAI2 PA11 ¥
"Window'" o
/ ~
P o o
-~ e -
-~ o -
rd o -
3E PAZO PA1Y
FO00-5FF
. 3F PAIB PA17 PA1E PA1S PA4 PA13 PA1Z PALY $FE0C-SFFEE
a0 KV MMLUG
a1 KV MMLA Only ocne Key Value Register for
42 KV MMU2Z each MMU, but all Key Value
43 KV MMU3 Registers fail in this range
a4 KV MMU4
a5 KV MMLUS
48 KV MMUB
a7 KV MMU7
48 N |] System/User Hlag bu
43 r Fuse Map Swiich Fuse
4A Access Key ;ask Cur;usr(;tlsv;ccossed Througn
g
48 Operate Key Current Task
4C o
P o -~
- o _~ Undefined
- e
7 } + + + 4 + } + f
Notes:

™o

Tne comants of bytes $4C through 97F are undefined and do not respond 1o any reads o writas.

The Access, Operate and %oy Value Registers ara cleared.an reset. The S-bit is set.

Unused bits of defined registers always read zeros.

Locations $40-$47 are acceasibla only when KVA=0.

In miltipla MMU configurations, the MMU whose Key Value Register matches the upper three bits of the access key will respond to & pro-
cessor read of iocations $48-54B . Processor writes ta these registars will cause the data 1o be written 1o all MMUs simultaneously.

4-424

MC6829¢MC68A29°*M(C6EB8B29

Pages in physical mamory require 10 bits 1o define their
location (rafer to Figure 5. These 10 bits are arranged as a
pair of bytas in the MMU in order to allow the use of double
byte instructions fe.g., LDD] in manipulating the MMU
registers. These first 64 bytes of the register area are then ac-
cassed as 32 pairs of bytes with sach pair describing the
logical-to-physical mapping for one 2K page. Registers 0 and
1 contain the page number for Igoical addresses
$0000-$07FF, register 2 and 3 contrel logical addresses
$0B00-30FFF, ate.

Each MMU has a 3-bit register called the KEY VALUE
REGISTER. This register determines the range of task
numbers an MMU controls. The top three bits of the Oparate
Key must match the Kay Value Register for that task to be
active. Similarty, the Key Value Register must match the top
three bits of the Access Key 10 change or view registers F0
through #$3F. Each MMU must receive a unique key valus
when the system is initialized to guarantea that no two
MMUs control the same range of tasks. To be able to write
to each MMU's Key Value Register separately, an external
decodar must be provided. This decode function can be
derived from address lines AQ, Al and A2 using a 3-to-8 line
decoder. Writing to locations $40-$47 will cause the Key
Value of the MMU to be updated only if the KVA input is
low. In systems using a single MMU, the XVA input may be
wired iow.

BUILDING AN MMU SYSTEM

Up to B chips may be connected in parallef to create a max
imumn of 32 tasks, All MMU pins except ona (KVAI may be
wired in parallel. Each MMU chip contains 1280 bits of fast
on-chip lookup BAM. This AAM is accessible 10 bits at 8
tirme for mapping purposes, and as 2 and 8 bits at a time
when the Operating System O3 is changing the contents of
the RAM. In addition to the lookup RAM, sach MMU con-
tains a saparate copy of the Access Key, Operste Key, Fuse
Register, Key Value Register, and 5-bit. A CPU write to the
Access, Operate, or Fuse Register causes afl registers on all
MMUs 1o be updated. In contrast, the lookup RAM for sach
chip is updated only when the top thres bits of the Access
Key match the Key Vaiue Register for that chip. During map-
ping operations, each MMU compares the value in its
Operata Key (top threa bits| with its Key Value Register and
responds onty if a match is found. Similarly, when the pro-
cessor reads the RAM, each MMU comparss its Key value
with the Access Key {Figure 6).

REGISTER SELECT TRUTH TABLE
.Table 1 shows how the MMU registers are accessed by
the processor. It is assumed that the current 1ask is zero and
that the processor addrass lines A11-A15 are all ones. If the
S-bit is not set, the registers are still readable, but cannot be
moditied.

TABLE 1 — REGISTER SELECYT TRUTH TABLE

RA RIW KVA RS6 RSS RS4 RE3 RS2 RS1 RSO | register adgdressed

1 X X X x X X X X X none

[+ X 1 1 O o] 0 X X X none

Q 1 0 1 Q 0 0 X X X read Key Value Register

0 0 ¢ 1 0 o] o] X X X | wnte Key Value Regisier

D X X 4] n n n n n n byle nannnn of MMU RAM (Npte 1)
4] o] X 1 0 0 1 o 0 4] none (Note 21

o a X 1 ¢l 0 1 o] 0 1 write Fuse Regisier

¢l Q X 1 Q 0 1 4] 1 4] write Access Key

qQ o] X 1 a 4] 1 o] 1 1 wiite Operate Kay

0 1 X 1 0 o] 1 Q [#] 7] read S-tut INote 3)

0 1 X i 0 a 1 0 o 1 read Fuse Ragister [Note 3}
0 1 X 1 o Q 1 0 1 ¢ read Access Key (Note 3!
0 1 X 1 4] Q 1 o] 1 1 read Operate Xey (Note 3)
il X X 1 a 0 1 1 X X none

Q X X 1 o] 1 X X X X none

Q X X 1 1 X X X X X nane

Notes:

1. The MMU RAM 15 accessible only if the Key Value Register 15 equal 10 the top 3 buts of the Access Key Register The iower two bits of the
Access Key Register then determines which task s to ba accessed (R/W).

Tha S-bit 15 read-cnly,

o

The S-tut, Fuse, Access or Oparate registers are readsbla only if the Key Value Register s equal to the top 3 bis of 1he Access Key Regster.

This insures thal only one MMU wili respond to a read request of these locations.

4-425

MC6829*MC68A29*MC68B29

FIGURE 8 — MMU SYSTEMS CONFIGURATION

Up to B 68235
Task 78-31 n Parallal
Task 8-11
BA 6829
BS
Task O PA20
E o
a Task 1
M{A808/ MCBEORE Task 2
Al PAI
AN Task 3 _}_l System Bus
A0
20 PAQ
Task 0= Operating System Task
Task 1=DMA Task
Tasks 2-31 = User Tasks
DO-07?
::I > PAD-PAG
MCE8E9
PAZ0 System
— — Memary
BA, 85.E C RA
RG0-ASE
VA A
w
<
Al1.815 @ 2
L MCE80G ‘ [2
MCG0SE < .
D007 ADATD o 'j}— VMA
_— < o)
i " :
| g <
Decode 2
m_l NS
RS0, RS hat o
BA, BS,E. Q PAZD
AW _I MCBE29

00-07

R/W

4-426

MC6829*MCE8A29*MC68B29

REGISTER DESCRIPTION

System Bit (S:bit} — Read-only bit that must be set {5 = 1)
to write MMU ragisters. Reset and Interrupts set the S-bit.
Refer 1o Fuse Register for clearing the S-bit.

Operate Key — 5-bit R/ register that contains the cur-
rent task number. The operate key retains its valug until ex-
phicitly changed, During DMA transfers, the MMU averrides
the vaiue in the operate key and forces 1ask #£1 10 be the ac-
tive task. When the 5-bit 15 set, the oparate key is also over-
ndden, and task #0 is forced to be the active key.

Key Value — 3-bit H;'_V_'reglster that contains the range of
1asks an MMU controls, The Xey Value Register must match
the top three bits of the Operate Key for a task to be active.
The KVA signal must be low for an access of this register.

Access Key — 5-bit R/W register that contains the task
number of a task to be viewed or changed. This register re-
tains s value until explicitly changed

Register 40 to #3F — 64 bytes accessed as 32 pairs of
bytes with each parr describing the logical 1o physical mapp-
ing for one 2K page. Refer 1o Figure 5.

Fuse Aegister — 3-bit count down register used to change
from task #0 10 a user task. When a write to this register is
detected, the value wntten s loaded into the counter and it
pegins to decrement by one for every processor cycle, When
the counter underflows, the S-bitss cleared and the next pro-
cessor cycle will be mapped using the task number in the
operale key

RESET QPERATION

When reset, the MMU performs the following operatons
1 The Key Value Register 15 cleared,
The Fuse Register 1s disabled;
The System it {S-bit) 15 set,
The Operate Key Register s cleared,
The Actess Key Register s cleared.,
Aninternal reset flag 1s set

Reset causes the MCB82% 10 automaucally switch the
mernory map to task #0. An internal flag is set causing all bus
r.yClas 10 access physical addressas $1FFBOC-$1FFFFF [PAGT
1o PA20 all high, page $3FFI. This flag 1s cleared when the
key Value Regster s hirst witten While the internal reset
fiag 5 set, each MMU in the system will be actwely dnving
trg gddress bus An orderly start up procedure must assign
each MMLJ & key value before individual task allocatians are
mare

D 7 B WM

FUSE REGISTER OPERATION

The Fuses Register 15 a 3-bit register used tc switch trom
task #0 10 any other task. A write to this register causes an
internal 3-bit counter 1o be loaded with the data. On each
successive vaid (non-DMAL processor cycle the internal

4-427

counter is decremenied once. When the counter reaches
zerg, the task number in the QOparate Key will be the active
task, mapping logical 1o physical address, The value written
into the Fuse Register must be the number of cycles it 1akes
10 transfer program control from the store to Fuse Register
instruction. It is the responsibility of the Oparating System
{task #0) to make sure the processor will execute code from
the new 1ask properly by changing the Program Counter the
same cycla that the Fuse Register reaches zero |see follow-
ing example}.

Change from Task /0 to Tank n
LDA #n
5TA OPERATE
LDA 24
STA FUSE

JMP $XXXX
rita #4
te Fuse Address |Address Task N
Register [JMP | High Low | ¥YMA |Opcode
¥ | 4 | 3 | 2 | 1 ! a

Cycla by
Cycle
QOperaton
Fuse Aegqister
Contanis

Refer to Section MMU in 8 MCE809 System for Fuse
Reagister use in returning from an intercupt,

MMU INITIALIZATION PROCEDURE

The following steps should te followed 10 inmalize a mulu-
ple MMU systemn. [Reler 10 Hardwares/Programming Con-
siderations; Programming Examples section.}

1. Out of Reset, all MMUs are driving the address lines,
PA11 1o PAZD, high. This requires the imtialization
program to be located in this ZK byte page of ghysical
memory. Each MMU must be deselected by writing 2
unique value to its Key Value Register except for the
MMU that will run task #0 (MMUQC}. MMUD's Key
Value Register must not be wntten 10 untl task £0
registers 300 to $3F are programmed, specifying the
togical to physical mapping of memory . in addibon, if
MMUD Key Value Register 15 also initianzed with a
non-zerg value at this time the entire memory space IS
deselected and the operating system (task #01 cannot
be accessed (Example 1)

Only one MMU 15 now drnving the address bus. Task

#0 memary pages (2K per page) must be assigned by

wiiting the corresponding values into registers $00 10

83F (Example 21,

. The Key Value Register must be written to MMUD's
key value 10 allow mbatizabon of all other tasks by
ramoval of automatc mapping of PA11 to PA20 high
[Exarnple 2},

At this time, each MMU has a unique key value, Task
#3 has a specified memory map, and Task #0 s
operating. Tasks can now be started by wrting the
task number to be specified in the Access Key
Register, wriing registers $00 to $3F to the memory
map desired, loading the program into memory and
causing a task switch by a correct use of the Fuse
Register.

MC6829¢ MC68A29*M (68829

INTERRUPTS/MAP SWITCHING

The MCB829 monitors the Bus Availabie {BA) and Bus
Status (85! lines from the processor to determine what type
of bus operation is oegurnng. When an intarrupt is detected.
the current task is overridden by Task #0. The map switch
occurs during the processor vector fetch (BA=0, BS=1) 50
that Task #0 supplies the interrupt vector address. Detecting
an interrupt also sets the S-bit within the MMU allowing
Task #0 to be the operating task while the interrupt is ser-
viced.

DMA OPERATION

For a DMA transfer, the memory map is switched to Task
#1. This allows transfers of up 10 64K bytes without pro-
cessor intervention and without interfering with any other
task. 1An external OMA/VMA sigral shou!d be inciuded in
the decode circuitry for the RA input to prevent dead bus
cycles from affecting the MMUI. At the end of the DMA
transfer, the MCBB2Y returns 10 the task being used before
the transfer began irefer wo Programming Considerations).

MMLU iN A MCEB09 SYSTEM

The MCRA22 is designed to work direcily with the MCE809
processor. Other B-bit microcomputers may also use the
MMU by generating the approptiate inputs to the MMU. The
crucial area tor interfacing the computer to the MMU 1s the
design of the map switching hardware

For the MCBB09, the BA and BS wmignals are extremaly
useful for this function. Decoding these two signals provides
the following infarmation

Tha MMU uses these two signals directly from the pro-
cessor to determine what action to take for every bus cycle.

The MMU, unlike other MB800 paripherals, introduces an
additional delay (tpAD} in the systerm contiguration as it ac-
cepts addrass signals from the MPU and maps the MCE80S
logicsl address to the systemn physical address. When a
systemn is constructed this additional delay must be con-
sidered.

The system clock frequency is determined by these ad-
dress timing delays. Figure 7 shows this data. The Systemn
Cyctle time may be determined by adding:

1. the MPU £ to Q nse defay tayQ (max}

2. the MPLU address valid 10 Q nse to tAQ Iminl

3. the MMU mapping delay tpAD (max)

4. the system decode and buffer time tg (1his 1s the delay
due 1o bus buffers and decoding circuitry}

5. the address setup time required by peripherals tasg
Inote the setup time is required for the peripheral to
determine if it is setected as well as deselected dunng
every bus cyciel.

6. the MPU pulse width igh tPWEH.

NOTE
This equation must be satisfied:
‘PWEL = tAVE — LAQ T IMAD + 1B + 1AL

DMA OPERATION — By decoding the bus grant signal
{BA=1, BS=1], the MMU will automatically switch to Task
#1. Even when the MCB20% occasionally steals back a cycle
1o refresh its internal buses, this is reflecied by a change in
the bus grant signal which causes the map to temporarily
switch back to the normal running mode.

Note that the bus grant status is identical to the Hakt status
and is thus indistinguishable from a HALT. This should not
cause a problem since halting the processor will simply cause
the MMU to swiich 1o Task #1. When the MCBE09 starts to
run again, the status lines will change and cause the MMU 10
switch to the proper map.

FIGURE 7 — ADDRESS DELAY

TPWEL-@———;—ﬂ

BA BS MCEB00 State
0 o3 Normat {runmng) mode
0 1 Iaterrupl Acknowledge (IACK)
1 0 SYNC Acknowledge
1] HALT or Bus Grar-
E “taval?

4—“’-\0—’

: /

A

t——— (M AD-——

D e G

g ‘Buller)

Shrg o) MPL spedizatio, refer 16 the
YCRETE Dana Sheet for this value

=

1, ——

GG

4-428

MCE823¢MCB88A29¢M (68829

CHANGING TASK TO OPERATING SYSTEM {0S} —
The OS5 map (Task #0} is automaticaily selected 1o sarvics all
interrupts. The Interrupt Acknowiledge (IACK; BA=0,
BS= 1) signal is used to dstermine when an interrupt vector
is being fetched. The map is switched at this timea in grder to
supply the processor with an interrupt vector from the 0OS
address space, not the user's. At the time |IACK is asserted,
all of the registers have been stacked for the interrupt in the
usar's address map. This means that the only information
the OS needs to save cancerning the running process is its
stack pointer, All other information about the task is saved
on the user's stack and in the MMU registers. -The map
switch is latched sinca |ACK will only be present for two
machine cycles, yet the OS must retain control until tha in-
tarrupt is serviced. This latched information is kept in a fiag
register called the S-bit. This hit is set on any IACK and re-
mains set until cleared by software. The first thing the OS
must do is save the interrupted 1ask’s stack pointer in a table
and load the stack pointer with the current top of stack in the
0S mep. This s a critical section of code and must not be in-
terrupted. For this reason, an MMLU system cannot accept
two interrupts in @ row, Tha first interrupt causes the map 1¢
switch 10 task zero. The second interrupt would stack the
machine state at the wrong address in the operating system.
As a consequenca of this, Non-Maskable Interrupts (NMI)
must be forbidden in multi-tasking systems since an NM| is
possible a1 any tima {(even during another interrupt). Similar-
ly, normal intarrupts {IRQ) do not set the Fast interrupt
IFIRQ), bit F of the status register, in the processor and,
thus, potentially allow anothar interrupt befare the processor
has a chance to switch stack pointers. Simpla external hard-
ware can be used to disable FIRQ when 1RQ is pending.
Unlike the NMI input, the FIRQ tnput is level sensitive and

may be masked with external hardware during IRQ opera-
tions,
A typical irterrupt service routine begins like this:

QRCC N+F
5TS SAVESP
LOS 0SSP

RETURNING FROM THE OS TQ TASK N — The OS must
exacute an ATl instruction ta get the processor to reload the
user ragisters. The map switch must occur after the opcode
for the RTI is fetched and bafora the first register is puiled
from the stack. Prior 1o the RTI, the DS must reload the
stack pointer from the one that corresponds to the task
about to run. Thare must ba no interrupts from the tima the
stack pointer is reloaded until the RTE is executed. Tha signal
to the MML that the map should be returned 10 the user task
is noted by a write to a 3-bit down counter called tha FUSE
REGISTER. When a write to this register is datected, the
value written is loaded into the counter and it begins to
decrement by one for every processor cycle. When tha
counter under flows, the S-bit is cleared and the next pro-
cessor cycle will be mapped using the task number in the
Operate Kay. For most systems, a 1 would be written ta the
Fuse Registar immediately before the ATl opcode is &x-
ecuted. Note that DMA operations are still possible within
this critical saction. The Fuse Register counts anly non-DMA
cycles after the write to the Fuse Register in order to ba sure
of when to switch the map. Bus dead cycles are also exclud-
ed whaen clocking the Fuse Register. Thus, the Fusa Register
15 inhibited from counting whenever BA is high, and for the
cycle atter BA transitions from high 10 jow. The common ex-
it point for all 03 functions looks semething like this:

EXIT LDA TASK GET NEXT TASK TO RUN
5TA OPERAT AND PLACE IT IN THE OPERATE KEY
STS o58P SAVE CURRENT STACK POINTER
QRCC F+) SET F AND | [ENTER CRITICAL SECTION
LD$ SAVESP RESTORE USER'S STACK POINTER
LDA n CAUSE MAP SWITCH 1 CYCLE AFTER
5TA FUSE WRITE TO FUSE REGISTER
RTI RETURN TO USER TASK
-
L]
. MAP SWITCH DCCURS, USER TASK RESUMES

4-429

MC6829*MC68A29*M(C68B29

USING THE MC8800

When using a MCB300 processor external logic is required
toa dstermina when 1o switch meps. The MMU is controlled
by its BA, BS inputs, the 5-bit and the Operate Key. For ex-
ample, deceding any references 10 the interrupt vectors and
generating 1ACK as a result will work as long as each task
refarences these locations gnly when the processor is fetch-
ing an interrupt vectar. Anathar possibility is to monitar the
processor A/W line. For tha MCB800, the only time seven
wiitas oocur in a row is during an, interrupt sequence. Thus
the external logic that generatas BA and 85 must wait until it
sees the saven writes and then assert IACK for the next two
cycles.

A MCE30 proacessar interface to the MMU must alse in-
clude lagic to generate the Q bus signal.

HARDWARE/FROGRAMMING CONSIDERATIONS

The following sections contain examplas and suggestions
on how to apply tha MMU in a system.

MEMORY PROTECTION — The MMU can provide
mermary protection on a per page basis by defining the high
order physical address ling (PA20) as a write access lina. If
write protection is desirad, this signal can be gated with the
read/write ling, from the processor, to generate a disable
signal. This can be used to inhibit the memory chip salect
logic or generate en intarrupt to signal a violation of a writs
protected area. The write protect lina can also be combined
with the DMA/VMA logic that is necessary ip systems using
DMA, In this case, writes 10 protected memory would ap-
pear as dead cycles to the main memary. Nola that the
designtion of the write protect line is purely arbitrary. The
MML) simply combines the incoming address with the cur-
rent task number to determine a 10-bit rasult, If no write pro-
tection is needed, PA20 can be used as a 215t address line,
giving a total addressing range of 2 Megabyte, This scheme
can be raversed if desired and additiona! output lines from
the MMU can be used to specify more attributes of the
physical pages at ihe expense of reducing the number of
pagaes in physical memary.

MANAGING INTERRUPTS — An interrupt causes the
processor to suspend the current running task and perform a
sarvice routing for the interrupting device. User programs
should not have o handle intarrupts directly. Thus on inter-
rupts, the MMU {the operating system OS8) must switch
{rom the current map to 1ask O so that it can handle the inter-
rupt. (Tha OS5 may of coursa elect ta pass the wark of handl-
ing a specific interrupt 1o a 1ask that is expecting it.! The map
switching is latched {indicatad by the S-bit} so that the pro-
cessor has a5 much time as it neads 10 senvice the imterrupt.
Aftar the interrupt has bean processad, the OS5 can then look
at the current process priaritias and determine the next pro-
cess to run, If, after the interrupt service, the task that was
running before the intarrupt is to continue 1o run, the OS
causes tha map to switch back to that task. . howevar,
another task is 10 start running, the OS5 can simply write the
new task number into the Dperate Key Register and then
cauge the map switch. Returning to tha normal map clears

thae S-bit and allows the user process 1o continue. By supply-
ing a source of penodic interrupts, the OS can regain control
of the processor and reschedule running processes.

QOperating systam requests for privileged operations by
running tasks ere ideally handled using the SW/! instruction.
This causes 8 map switch to task zero HACK is ssserted on
SWI which then processes the request and eventually
returns coantroi to the requesting task. Note that SWI sets
the | and F bits during execution of the instruction so that
whan the 0S5 is entered, the critical section of saving tha
user task pointer and reloading the O3S stack pointar can be
safaly sxecuted. Note that SWI2 and SWI3 do not have this
property and therefore raquire special handling. To safely
use SWI2 or SWI3, the programmer must explicitly mask
hardware interrupts.

QRCC H+F DISABLE \INTERRUPTS
SWi2/3 CALL OS5

MANAGING NON-EXISTENT MEMORY ACCESSES —
Memory accesses to non-existent memory raguires caraful
consideration. Once an instruction hes begun execution,
thers is no way to stop it from complsting. Thus, an instruc-
tion may reference 8 non-existant memory iocation, or an in-
terrupt may cause the machine state to be stacked into non-
existent memory. Once this has occurred, thera is not always
enough information available to backtrack the last instruc-
tion.

Ong solution to this problem is a hardware FIFO. When a
task is initialized, a certain number of pages will be assigned
from available memory. For example, a ROM program could
be placed in a task's map along with AAM for stack and
variable data areas. The remaining pages in the task’s map
are unassigned and references 1o these unassigned areas re-
quire special handling. These gaps in the mamory map of a
task may be filled by constructing a “FIFQ page’’ that returns
a known value when read (zero} and when written saves the
{logicall address and the data written to it. If at any time the
FIFO is not empty, the FIFO causes an interrupt at tha end of
tha current instruction. The processor then axamines the
contents of the FIFO and sllocates real pages where thare
were none before. The data in the FIFO is then placed in real
memory and the task may resuma execution. Thus, the pro-
gram is stopped at the end of the instruction that causes a
page fault, and all writes 1o non-axistant memary are cap-
tured in the FIFO.

The maximum nurnber of new pages that may be required
after any page fault is four. Consider the following instruc-
tion sequenca. A task has just started running and has onty
one page allocated 1o it ($0000-51FFF). The program to be
executed is as follows:

ORG $0000 PROGRAM START ADDRESS
LDS #58000 INITIALIZE STACK

LDX #53FFF POINT TO DATA AREA

LDD 151234

5TD X INITIALIZE VARIABLE

Executicn then proceeds as follows. Upon executing the
fourth instruction, two bytes are written, cne at location
$3FFF and the other at $4000. Since neither of these two
pages actually exist, the FIFO catches the address and data
written and pults the iRO line to signal a page fault. At tha

4-430

MC

5829* MC68A29¢MC68B29

end of the STD instruction, the processor will stack the
machine registars which causes two furthar page faults since
tha stacking operation writes data to locetions $7FFE-$8000.
The FIFQ must also catch these references since they con-
tain the machine state at the time of the original interrupt.
When task zero gains control, the FIFC data must be cleared
before any attempt is made to refarenca the task’s memory
map. If there are no available pages, tha task may be made
inactive until sufficient space exists to allow the program to
continue.

The maximurm number of bytes that may be written to
non-axistent memory before task zero gains control is 24,
This oceurs when the task pushes all of its registers onto the
stack whan the stack points to an uninitiaized page. Pushing
ali registers requires 12 bytes. At the end of the instruction,
an intarrupt will be generated which again pushes the entire
machine state. Thus, the FIFQ must be 24 bits wide (16 ad-
dress + B data lines] and 24 words deep.

The primary benefit of this scheme is to allow the MCEB09
stack to grow dynamically. When a task starts to run, the
stack could be initialized 1o $FFFF with no real memory at
that locatian. When the task dig its first subroutine call or

stack push, the FiFO interrupt would catch the information
and the aperating sysiem would then allocate memory. If the
task never used this area, it would remain unallocated and
thus be available for other uses. Nate that this approach pro-
vides for dynamic mermory expansion of growing data areas.
If the size of the static data areas is known at load-tima, then
mamory can be allocated to 8 task as needed. Heap rmanage-
mant isuch as for an editor buffer} can be handled by task
resident memory allocation routines which make operating
system calls to obtain more heap space.

The FIFD scheme does not implement a demand paging
system. it is assumaed that once a page has been assigned to
a task the paga remains assigned until the task ends execu-
tion or possibly gives it back Ivia a system calll to the
operating systerm.

DMA/VMA CIRCUIT

The following circuit, Figure B , is suggested to keep the
MCE0829 deselected during dead bus cycles of DMA. This cir-
cuit will also work in a non-MMU systam.

FHGURE 8 — ME800 OMA/VMA LOGIC

)
CLR
74L574
BA [}

=]

’D— DMA/VMA,

COMMON MMU EQUATES

Here is a list of assembler eguates that are used in the foliowing examples:

MMU EQU $FBOO
MMUQ EQU MMU + 540
MMUT EQU MMU + $47
584T EQU MMU + 548
FUSE EQU MMU) + 549
ACCESS EQU MMU + 544
OPERAT EQU MMU + $48 R
NTASK EQU fcrd

MPAGE EQU a2
MAXPGE EQU $400

PSIZE EQU 204

START OF MMU REGISTERS {IN TASK Q)
FIRST MMU'S KEY VALUE REGISTER
LAST MMLI'S KEY VALUE REGISTER
SYSTEM/LISER FLAG BIT

MAP SWITCH COUNT-DOWN REGISTER
ACCESS.KEY

CPERATE KEY

NUMBER OF TASKS IN SYSTEM
NUMBER OF PAGES PER TASK
MAXIMUM NUMBER OF PAGES IN 5YSTEM
NUMBER OF BYTES IN A PAGE

4-431

MCB6829¢MCB8A29*MC68B29

Programming Exampies
Example #1 — Only works if KV A is fully decodad
Write a program to initialize all MMU Key Value Registers except MMUD.

.

RESET ENTRY POINT FOR MMU SYSTEM

LpX #MMUT7 +1 POINT TO LAST MMU KEY VALUE REGISTER +1
LDA 7 INITSALIZE VALUE
KVINIT STA X
DECA
BNE KVINIT
L]
L] CONTINUE INITIALIZATION

At this point, each MML will have a unique key value. Note that the Key Value Register for MMUQ has not yet been
written so that page $3FF is still on the physical address bus. The difference is that now only one MMLU is driving the

address bus.

Example #2 —

Wiite an initiatization program that sets up the pages of Task #0 so that an address. $XXXX in Task #0 corresponas
to physicai address $1FXXXX.

4 FROM KEY VALUE INITIALZATION

MOW INITIALIZE IDENTITY MAP FOR TASX O

CLA ACCESS TALK TD TASK 0 [ALREADY ZERO ANYWAY)
LDX IMMU
LDG #5360 LAST PAGE —32
MOINIT STD X+
INCB QUIT WHEN D= $200
BNE MOINIT
CLA MMLO LET MMU 20 GO
JMP EXBUG TRANSFER TO MONITOR (EXBUGDEI
Example 3 —

Give task #9 physical page #88 and place it in the task’s address space so that #9 refers to this page with addresses
$1000-$17FF. Write protect this page for this task. (The write protect bit is defined as PA20 of the MMU.)

PROTEC EQY $200 WRITE PROTECY BIT POSITION (PAZ0)
»
-
>
LDA 0 SELECT TASK #9 FOR
STA ACCESS MODIFICATION
LOX #88+ PROTEC WRITE PHYSICAL PAGE INTO
STX MMU +4 THE APPROPRIATE REGISTER

Example #4 —

Write a subroutine that reads a byta from any task. On entry, the A register contains the task number, and the X
register contains the address of that task to read. Assuma that the OS task has its third page free for this use. The
byte that is read is returned in A.

FRAGE EQU $1000 DEDICATED FREE PAGE
FREE EQU 4 OFFSET INTO MMU DF FPAGE
* FUBYTE — FETCH LISER BYTE
FUBYTE LBSR GETPAGE POINT TO PAGE
LDA X PICKUP BYTE
RTS

4-432

MC6829eMCE8A29*MCE8B29

Example #5 —

Write a subroutine that writes a byte to any task. On entry the A register contains the task number and the X
register contains the addrass of that task to read. The B register contains the byte to place in the task’s memory.
Assume that the OS 1ask has its third page fres for this usa.

SUBYTE

Exampie 6 —

SUBYTE -~ SET USER BYTE

LBSA
518
RTS

GETPAGE PLACE USER PAGE [N FPAGE

Write a subrouting 10 be given a task number arnd memory address that returns a pointer 10 that byte of the named
task. On entry, the A register contains the task number and the X register contains the task address.

* GET PAGE - POINT TO USER

* Given a 1ask pumber in A and a task address in X,

BYTE

* ratum with X pointing o thaz byte n task 0.

* This subroutine assumes that task C has & free
* page (FPAGE) that it uses 10 map a page of the

* specified 1ask into 1ask ©'s map.

GETPAGE PSHS
STA
TFR
ASRA
ASRA
ANDA,
Loy
Loy
CLA
STY
TFR
ANDA,
LOX
LEAX
PULS

DY
ACCESS
X, D

$%00111110
MU

ALY
ACCESS
MMU + FREE
X, D

£%111
IFPAGE

D, X

D, Y. PC

SAVE SOME REGISTERS

SETUR WINDOW TO TASK

MOVE POINTER INTQ ACCUMULATCR
FIND PrYSICAL PAGE #

MASK ALL BUT PAGE ¥

PICKUP PAGE

NOW TALK TO 05 MAP

'FREE' OS PAGE

NOW PDINT TO QFFSET

MASK HIGH BITS OF ADDRESS
POINT TO PAGE START

ADD OFFSET

RESTCRE AND RETURN

The above method of fetching bytes from other tasks is appropriate where only a few bytes of memory are to be
transfarrad. When larger amounts of memory are to be moved, a more general subrouting can be written that
transfars up 1o 2K bytes lone page) before the MMU registers need to be changed.

4-433

